The Subrank of Random Tensors

Jeroen Zuiddam
University of Amsterdam
Joint work with Harm Derksen and Visu Makam.

- We solved a problem in tensor theory about a notion called the subrank of tensors.
- The subrank was introduced by Strassen in 1987 to study fast matrix multiplication algorithms in CS
- and has connections to several problems in math and physics.
- Our result: We determine the subranke for "random tensors"/ "almost all tensors" generic tensors
- Improve on previous bounds of Strassen \& Bürgisser from $19 g 1$

1. Subrank and Applications
2. Tensor Parameters and Their Value on Random Tensors
3. Subrank of Random Tensors
4. Upper bound
5. Lower bound
6. Tensor Space Decomposition.
7. Subrank and Applications

Two characterizations of rank of a matrix $m \in \mathbb{F}^{n \times n}$
Decomposition into simple matrices

$$
m=\sum_{i=1}^{r} u_{i} \otimes v_{i}
$$

"Create matrix from identing"
Equiv:

$$
M=A I_{r} B
$$

Gaussian elimination

$$
A M B=I_{r^{\prime}} \text { maximize }
$$

"Create identity from matrix"

Two different notions of rank of a tensor $T \in \mathbb{F}^{n \times n \times n}$

Tensor rank
minimize $_{2}$

$$
T=\sum_{i=1}^{r} u_{i} \otimes v_{i} \otimes w_{i}
$$

Equiv:

$$
T=U \otimes V \otimes W \cdot \sum_{i=1}^{r} e_{i} \otimes e_{i} \otimes e_{i}
$$

Subrank

$$
\begin{array}{l|l}
\sum_{i=1}^{S} e_{i} \otimes e_{i} \otimes e_{i}=U \otimes V \otimes W \cdot T & Q(T)
\end{array}
$$

Applications

- Matrix multiplication
- Circuit complexity [Raz]
$R(T)$
- Matrix Multiplication
- Additive Combinatorics
matrix rank

linear combinations of rows and columns

Subrank

linear combinations of slices in all three directions

Applications of Subrank

- Complexity Theory
$T \in \mathbb{F}^{n \times n \times n}$ ens bilinear map $T: \mathbb{F}^{n} \times \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$
$Q(T) \leftrightarrow m$ number of independent scalar multiplications that can be reduced to T
- Quantum Information
$T \in \mathbb{C}^{n \times n \times n} \leadsto$ Tripartite quantum state
$Q(T) \longleftrightarrow$ largest "GHZ" state obtainable from T by SLOCC
- Combinatorics
$H \subseteq[n] \times[n] \times[n]$ hypergraph, independence number $\alpha(H) \leq Q(T)$ for any T that "fits" H. Egg. cap sets, sunflowers, corners,...

2. Tensor Parameters and Their Value on Random Tensors
$T \in \mathbb{F}^{n \times n \times n}$

$$
\begin{aligned}
0 \leqslant Q(T) \leqslant & S R(T) \leq n \leq R(T) \leq n^{2} \\
& A R(T) \\
& G R(T) \\
& R^{G}(T)
\end{aligned}
$$

Slice rank

$$
\begin{aligned}
& T=\sum_{i=1}^{a} \sum_{j} u_{i} \otimes v_{i j} \otimes w_{i j}+\sum_{i=1}^{b} \sum_{j} u_{i j} \otimes v_{i}^{\prime} \otimes w_{i j}^{\prime} \\
& \\
& \text { minimize } a+b+c
\end{aligned} \sum_{i=1}^{c} \sum_{j} u_{i j}^{n} \otimes v_{i j}^{\prime \prime} \otimes w_{i}^{\prime \prime} \quad S R(T)
$$

Geometric rank
$\operatorname{codim}\left\{(u, v) \in \mathbb{F}^{n} \times \mathbb{F}^{n}: \forall w T(u, v, w)=0\right\}$
$T \in \mathbb{F}^{n \times n \times n}$
Generally: $\quad 0 \leq Q(T) \leq S R(T) \leq n \leq R(T) \leq n^{2}$
$A R(T)$
$G R(T)$
$R^{G}(T)$
On random
tensors T :
$?$
$\approx n$
$\approx n^{2}$
3. Subrank of Random Tensors

Theorem For almost all $T \in \mathbb{F}^{n \times n \times n}$ we have $Q(T)=\theta(\sqrt{n})$
Remarks:

- "Almost all" = "random" = generic
- That is, there is a nonempty Zarisk-open $U \subseteq \mathbb{F}^{n \times n \times n}$ such that for all $T \in U$ we have $Q(T)=\theta(\sqrt{n})$
- Very precise bounds: $\sqrt{3 n-2}-5 \leq Q(T) \leq \sqrt{3 n-2}$
- Previously: $Q(T) \leq n^{2 / 3+o(1)}$
- Also for higher-order tensors
- Application: Subrank is not additive under direct sum.

Upper bound
$Q(n):=$ subrank of a generic tensor in $\mathbb{F}^{n \times n \times n}$
To prove: $Q(n) \leq \sqrt{3 n-2}$
$C_{r}:=\left\{\right.$ tensors in $\mathbb{F}^{n \times n \times n}$ with subrank $\left.\geqslant r\right\}$
Lemma 1 $Q(n)=$ largest r such that $\operatorname{dim} C_{r}=\frac{\operatorname{dim} \mathbb{F}^{n \times n \times n}}{n^{3}}$.
Lemma $2 \operatorname{dim} C_{r} \leq n^{3}-r\left(r^{2}-3 n+2\right)$
Let $t=Q(n)$.
Then $n^{3}=\operatorname{dim} C_{t} \leq n^{3}-t\left(t^{2}-3 n+2\right)$.
Then $t^{2}-3 n+2 \leq 0$
So $t \leqslant \sqrt{3 n-2}$
$C_{r}:=\left\{\right.$ tensors in $\mathbb{F}^{n \times n \times n}$ with subrank $\left.\geqslant r\right\}$
Lemma $2 \operatorname{dim} C_{r} \leq n^{3}-r\left(r^{2}-3 n+2\right)$
Proof idea

- Non-injective parametrization of C_{r}
- Compute dimension of parameter space
- Subtract dimension of "over-count" (fiber dimension)
$X_{r}=\left\{\right.$ tensors in $\mathbb{F}^{n \times n \times n}$ with $[r] \times[r] \times[r]$ subtensor arbitrary diag. $\}$

$$
\psi_{r}: G L_{n} \times G L_{n} \times G L_{n} \times X_{r} \rightarrow \#^{n \times n \times n}
$$

$(A, B, C, T) \mapsto(A \otimes B \otimes C) T \quad$ has image C_{r}

Lower bound

$$
\begin{aligned}
X_{r}= & \left\{\text { tensors in } \mathbb{F}^{n \times n \times n} \text { with }[r] \times[r] \times[r] \text { subtensor arbitrary diag. }\right\} \\
\psi_{r}: & G L_{n} \times G L_{n} \times G L_{n} \times X_{r} \rightarrow \mathbb{F}^{n \times n \times n} \\
& (A, B, C, T) \mapsto(A \otimes B \otimes C) T \quad \text { has image } C_{r}
\end{aligned}
$$

Proof idea

- Find condition that imply image of ψ_{r} has full dimension
- Use notion of differential dψ_{r}

$$
\begin{aligned}
&\left(d \psi_{r}\right)_{\left(g_{1} g_{2}, g_{3}, T\right)}: \text { Mat }_{n \times n} \times \text { Mat }_{n \times n} \times M_{n t} \times n \times Y_{r} \rightarrow \mathbb{F}^{n \times n \times n} \\
&(A, B, C, T) \mapsto\left(\left(A \otimes g_{2} \otimes g_{3}\right)+\left(g_{1} \otimes B \otimes g_{3}\right)+\left(g_{1} \otimes g_{2} \otimes C\right)\right) T \\
&+\left(g_{1} \otimes g_{2} \otimes g_{3}\right) S
\end{aligned}
$$

Tensor space decompositions
Goal: write tensor space $\mathbb{F}^{n \times n \times n}$ as a sum of tensor subspaces, as efficiently as possible such that each subspace has the form of an $n \times n$ manx subspace tensored with \mathbb{F}^{n}

$$
\begin{array}{rl}
X \subseteq \text { Mat }_{n \times n}=\mathbb{F}^{n} \otimes \mathbb{F}^{n} & X[1]=\mathbb{F}^{n} \otimes X \subseteq \mathbb{F}^{n \times n \times n} \\
X[2] & = \\
X[3] & =X \otimes \mathbb{F}^{n}
\end{array}
$$

Theorem There are subspaces $X_{i} \subseteq \operatorname{Mat}_{3,3}$ of dim 3 each, such that

$$
\mathbb{F}^{3 \times 3 \times 3}=X_{1}[1]+X_{2}[2]+X_{3}[3]
$$

Theorem There are subspaces $X_{i} \subseteq$ Mat $_{3,3}$ of dim 3 each, such that

$$
\mathbb{F}^{3 \times 3 \times 3}=X_{1}[1]+X_{2}[2]+X_{3}[3] .
$$

note: dimensions left and right are equal.
Remark Not possible with matrices: there are no subspaces $X_{i} \subseteq \mathbb{F}^{n}$ of dimension $n / 2$ each such that $\mathbb{F}^{n \times n}=X_{1}[1]+X_{2}[2]$

Theorem There are subspaces $X_{i} \subseteq\left(\mathbb{F}^{n}\right)^{\otimes n-1}$ of $\operatorname{dim} n^{n-2}$ each, such that $\left(\mathbb{F}^{n}\right)^{\otimes n}=X_{1}[1]+X_{2}[2]+\cdots+X_{n}[n]$.

Again: dimensions match.

Theorem There are subspaces $X_{i} \subseteq$ Mat $_{3,3}$ of dim 3 each, such that

$$
\mathbb{F}^{3 \times 3 \times 3}=X_{1}[1]+X_{2}[2]+X_{3}[3] .
$$

Application: Subrank is not additive under direct sum
Theorem There are tensors $S, T \in \mathbb{F}^{n \times n \times n}$ such that $Q(S), Q(T) \leq \sqrt{3 n-2}$ while $Q(S \oplus T) \geqslant n$.

Proof idea

- Let T be "random."
- Let $S=I_{n}-T$. Then S is "random".
- Then $Q(S), Q(T) \leq \sqrt{3 n-2}$ by our theorem.
- On the other hand, $Q(S \oplus T) \geqslant Q(S+T)=Q\left(I_{n}\right)=n$.

Selected Open Problems

1. Our upper bound $Q(T) \leq\lfloor\sqrt{3 n-2}\rfloor$ for generre $T \in \mathbb{F}^{n \times n \times n}$ is tight for $n \leqslant 100$. Is this always true?
2. Determine all possible tensor space decompositions
3. What is the largest gap between $Q(S \oplus T)$ and $Q(S)+Q(T)$?
