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Hypergraph

G = (V ,H), V : vertex set, H: hyperedge set.
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Community detection

Political blogs data from Adamic-Glance ’05. Figure from Abbe ’18
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Community detection on random graphs

Consider a (unknown) partition of n vertices into two communities of size
n/2. Generate edges within each community with probability p. Generate
edges across communities with probability q < p.
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Spectral method: observe A, compute v2(A), use the signs of the entries in
v2(A) to recover the community.

‖A− EA‖ = O(
'
n(p + q)) when (p+q)n

2 = Ω(log n). o(n) vertices are
mis-classified.
Feige–Ofek ’05, Lei–Rinaldo ’13, Le–Levina–Vershynin ’16, Benaych Georges–Bordenave–Knowles ’17, Latala–van
Handel–Youssef ’17, Alt–Ducatez–Knowles ’19, Tikhomirov–Youssef ’19
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Two communities of equal size. σ : [n] → {−1, 1}.

Bounded expected degrees: p = a
n , q = b

n . Impossible to recover σ exactly.

Detection is possible (strictly better than random guessing) if and only if
(a− b)2 > 2(a+ b) (Kesten-Stigum threshold).

Decelle-Krzakala-Moore-Zdeborová ’11, Mossel-Neeman-Sly ’12, ’14, Massoulié ’14,
Bordenave-Lelarge-Massoulié ’15.
Rich literature on SBMs in more general cases and different settings: survey by Abbe ’18.
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Bounded expected degrees

Abbe et al. ’18, a = 2.2, b = 0.06, n = 100000, apply spectral method directly on A

When p = a
n , q = b

n , top eigenvectors are localized on high degree vertices.
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Spectrum of B

[Bordenave, Lelarge, Massoulié ’15] Let p = a
n , q = b

n . Then if
(a− b)2 > 2(a+ b), with high probability,

λ1(B) =
a+ b

2
+ o(1), λ2(B) =

a− b

2
+ o(1), |λ3(B)| ≤

(
a+ b

2
+ o(1).

The second eigenvector of B can be used to detect σ.
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n . Then if
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λ1(B) =
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2
+ o(1), λ2(B) =

a− b

2
+ o(1), |λ3(B)| ≤

(
a+ b

2
+ o(1).

The second eigenvector of B can be used to detect σ. A fails but B works
(optimally)!
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Type assignment σ : [n] → {−1,+1}.
Each hyperedge e = {v1, . . . , vq}
appears independently with probability

P(e ∈ H) =

!
cin if σv1 = · · · = σvq
cout otherwise.

Task: observe G , construct a label estimator σ̂ ∈ {−1,+1}n correlated
with the true σ.

Ghoshdastidar-Dukkipati ’14, ’15, Chien-Lin-Wang ’18, Kim-Bandeira-Goemans ’18,
Ahn-Lee-Suh ’18, . . .
when expected degree (expected number of hyperedges containing a vertex) d → ∞.
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Sparse HSBM

Detection: Angelini-Caltagirone-Krzakala-Zdeborová ’15 conjectured a phase
transition when cin = a

( n
q−1)

, cout =
b

( n
q−1)

, based on the belief propagation

algorithm.
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Detection: Angelini-Caltagirone-Krzakala-Zdeborová ’15 conjectured a phase
transition when cin = a

( n
q−1)

, cout =
b

( n
q−1)

, based on the belief propagation

algorithm.

α := (q − 1) a+(2q−1−1)b
2q−1 , β := (q − 1) a−b

2q−1 . β
2 > α is the detection

threshold.

(Provable) spectral method in the bounded expected degree regime?

Yizhe Zhu (UCI) 12 / 25



Tensor
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Tensor

The adjacency tensor T : sparse random tensor of order q with nq many entries.
Ti1,...,iq = 1 if {i1, . . . , iq} is a hyperedge.

Figure: an order-3 tensor

Most tensor problems are NP-hard (Hillar-Lim
’13): rank, spectral norm, best low-rank
approximation,. . .

Tucker decomposition: Ghoshdastidar-Dukkipat ’17, Ke-Shi-Xia ’20 for d = ω(log n).
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Adjacency matrix

Define the adjacency matrix of G as

Aij := {number of hyperedges containing i , j}.

trAk counts the number of closed walks of length k in G :
(i0, e1, i1, . . . , ik−1, ek , i0).

The spectral method on A fails when average expected degree is O(1).

[Pal-Z. ’21]: spectral method on a matrix counting the self-avoiding walk of
length O(log n) for HSBM achieves the conjectured threshold in Angelini et al
’15, generalization of Massoulié ’14.

What about the non-backtracking operator?
[Stephan, Z. ’22]: Very efficient!

Yizhe Zhu (UCI) 14 / 25



Non-backtracking operator for hypergraphs

Yizhe Zhu (UCI) 15 / 25



Non-backtracking operator for hypergraphs

For a given hypergraph G = (V ,H), let %H be the oriented hyperedge in G such
that

%H = {(v , e) : v ∈ e ∩ V , e ∈ H}, | %H| = q|H|.

Yizhe Zhu (UCI) 15 / 25



Non-backtracking operator for hypergraphs

For a given hypergraph G = (V ,H), let %H be the oriented hyperedge in G such
that

%H = {(v , e) : v ∈ e ∩ V , e ∈ H}, | %H| = q|H|.

B : a matrix indexed by %H such that

B(u→e),(v→f ) =

)
1 if v ∈ e \ {u}, f ∕= e,

0 otherwise.

Yizhe Zhu (UCI) 15 / 25



Non-backtracking operator for hypergraphs

For a given hypergraph G = (V ,H), let %H be the oriented hyperedge in G such
that

%H = {(v , e) : v ∈ e ∩ V , e ∈ H}, | %H| = q|H|.

B : a matrix indexed by %H such that

B(u→e),(v→f ) =

)
1 if v ∈ e \ {u}, f ∕= e,

0 otherwise.

u

e
v

f

u

e

v

Storm ’06: Zeta function of hypergraphs.
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Consider an order-q symmetric probability tensor P ∈ Rrq and σ : [n] → [r ].

Each hyperedge of size q is included in H with probability

P(e ∈ H) =
pσ(e)*

n
q−1

+

for any e = {v1, . . . , vq}, where

σ(e) = σ({v1, . . . , vq}) := (σ(v1), . . . ,σ(vq)).

The proportion of each type is

πi =
#{v ∈ V | σ(v) = i}

n
.

Assume each vertex has the same expected degree d .
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Generalized Kesten-Stigum threshold

The nonzero eigenvalues of EA are given by

|µr | ≤ · · · ≤ |µ2| ≤ µ1 = d .

Denote by r0 the number of informative eigenvalues, or equivalently

(q − 1)µ2
r0+1 ≤ d < (q − 1)µ2

r0 .

The generalized Kesten-Stigum threshold conjectured in Angelini et al. ’15.

Yizhe Zhu (UCI) 17 / 25



Spectrum of B

Theorem (Stephan-Z., ’22)

Let G be a hypergraph generated according to the HSBM with m hyperedges,
and B be its non-backtracking matrix and |λ1(B)| ≥ |λ2(B)| ≥ · · · ≥ |λqm(B)|.
Then with high probability:

For any i ∈ [r0],
λi (B) = (q − 1)µi + o(1).

For all r0 < i ≤ qm,

|λi (B)| ≤
'
(q − 1)d + o(1).
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Theorem (Stephan-Z., ’22)

Let G be a hypergraph generated according to the HSBM with m hyperedges,
and B be its non-backtracking matrix and |λ1(B)| ≥ |λ2(B)| ≥ · · · ≥ |λqm(B)|.
Then with high probability:

For any i ∈ [r0],
λi (B) = (q − 1)µi + o(1).

For all r0 < i ≤ qm,

|λi (B)| ≤
'
(q − 1)d + o(1).

Informative eigenvalues of EA above the Kesten-Stigum threshold can be
seen in the spectrum of B outside the disk of radius

'
(q − 1)d .

Other eigenvalues of B are confined in the disk.
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Spectrum of B

n = 6000, q = r = 4. The parameters cin and cout have been chosen so that d = 4 and
µ2 = 2. The single eigenvalue is close to (q − 1)d = 12 and the three eigenvalues are
near (q − 1)µ2 = 6.
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,
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−(q − 1)I A− (q − 2)I

-
,

and D is the diagonal degree matrix with Dii = #{e ∈ H : i ∈ e}.

Lemma (Stephan-Z., ’22)

The following Ihara-Bass formula holds:

det(B − zI ) =(z − 1)(q−1)|H|−n(z + (q − 1))|H|−n

· det
*
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+
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0 (D − I )

−(q − 1)I A− (q − 2)I

-
,

and D is the diagonal degree matrix with Dii = #{e ∈ H : i ∈ e}.

Lemma (Stephan-Z., ’22)

The following Ihara-Bass formula holds:

det(B − zI ) =(z − 1)(q−1)|H|−n(z + (q − 1))|H|−n

· det
*
z2 + (q − 2)z − zA+ (q − 1)(D − I )

+
.

The spectrum of B̃ is identical to the spectrum of B, except for possible trivial
eigenvalues at −1 and −(q − 1).
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Define the 2n × 2n matrix B̃ as

B̃ =

,
0 (D − I )

−(q − 1)I A− (q − 2)I

-
,

and D is the diagonal degree matrix with Dii = #{e ∈ H : i ∈ e}.

Lemma (Stephan-Z., ’22)

The following Ihara-Bass formula holds:

det(B − zI ) =(z − 1)(q−1)|H|−n(z + (q − 1))|H|−n

· det
*
z2 + (q − 2)z − zA+ (q − 1)(D − I )

+
.

The spectrum of B̃ is identical to the spectrum of B, except for possible trivial
eigenvalues at −1 and −(q − 1).

q = 2: Bass ’92. Storm ’06 for regular hypergraphs, stated in Angelini et al. ’15.
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Eigenvector overlaps

Theorem (Stephan-Z., ’22)

For i ∈ [r0], let ũi be the last n entries of the i-th eigenvector of B̃, normalized so
that ‖ũi‖ = 1. Then with high probability, there exists a unit eigenvector φ̃i of
EA associated to λi such that

〈ũi , φ̃i 〉 =
.

1− τi

1 + q−2
(q−1)µi

+ o(1) where τi =
d

(q − 1)µ2
i

.
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Eigenvector overlaps

Theorem (Stephan-Z., ’22)

For i ∈ [r0], let ũi be the last n entries of the i-th eigenvector of B̃, normalized so
that ‖ũi‖ = 1. Then with high probability, there exists a unit eigenvector φ̃i of
EA associated to λi such that

〈ũi , φ̃i 〉 =
.

1− τi

1 + q−2
(q−1)µi

+ o(1) where τi =
d

(q − 1)µ2
i

.

When r = 2, and

pi1,...,iq =

)
cin if σ(i1) = · · · = σ(iq)

cout otherwise
,

rounding the entries ũ2 to ±1 gives a correlated detection.
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More than 2 blocks

Scatter plot of the second and third eigenvector of B̃ under the symmetric HSBM with q = 4, r = 3 and n = 20000. The
parameters cin and cout have been chosen so that d = 4 and µ2 = 2. The colors correspond to the actual label of each vertex.

vertices 1 2 · · · n
ũ2 x1 x2 · · · xn
ũ3 y1 y2 · · · yn
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Local structure: Galton-Watson hypertree
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Local structure: Galton-Watson hypertree

Start from a root ρ with a given spin σ(ρ);

Generate k = Poi(d) hyperedges intersecting only at ρ, yielding k(q − 1) children;

For each hyperedge, fix an ordering of the (q − 1) associated children
v = (v1, . . . , vq−1). Assign a type to each (q − 1)-tuple randomly such that

P
!
σ(v) = j

"
=

1

d
· pσ(ρ),j ·

#

ℓ∈j

πℓ.

Repeat the process for each child of ρ, treating as the root of an i.i.d
Galton-Watson hypertree.
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Start from a root ρ with a given spin σ(ρ);

Generate k = Poi(d) hyperedges intersecting only at ρ, yielding k(q − 1) children;

For each hyperedge, fix an ordering of the (q − 1) associated children
v = (v1, . . . , vq−1). Assign a type to each (q − 1)-tuple randomly such that

P
!
σ(v) = j

"
=

1

d
· pσ(ρ),j ·

#

ℓ∈j

πℓ.

Repeat the process for each child of ρ, treating as the root of an i.i.d
Galton-Watson hypertree.

[Pal-Z. ’21]: considered 2-type Galton-Watson hypertrees.
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Moment method and a bipartite representation
trBℓ = #{closed non-backtracking walks of length ℓ} with ℓ = κ log n.
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trBℓ = #{closed non-backtracking walks of length ℓ} with ℓ = κ log n.
Bounding bulk eigenvalues: high trace method on matrices modified from B .

A non-backtracking walk on %H of length ℓ: (v0 → e0, v1 → e1, . . . , vℓ → eℓ).

A corresponding non-backtracking walk on the vertex space of a
corresponding bipartite of length 2ℓ+ 1: (v0, e0, v1, e1, . . . , vℓ, eℓ).
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trBℓ = #{closed non-backtracking walks of length ℓ} with ℓ = κ log n.
Bounding bulk eigenvalues: high trace method on matrices modified from B .

A non-backtracking walk on %H of length ℓ: (v0 → e0, v1 → e1, . . . , vℓ → eℓ).

A corresponding non-backtracking walk on the vertex space of a
corresponding bipartite of length 2ℓ+ 1: (v0, e0, v1, e1, . . . , vℓ, eℓ).
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A closed non-backtracking walk: (1, e1, 2, e2, 1, e3, 3, e2, 1).
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Conclusions

Community detection for sparse random hypergraphs can be reduced to an
eigenvector problem of a 2n× 2n non-normal matrix constructed from A and
D, and it works down to the conjectured generalized KS threshold.
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Conclusions

Community detection for sparse random hypergraphs can be reduced to an
eigenvector problem of a 2n× 2n non-normal matrix constructed from A and
D, and it works down to the conjectured generalized KS threshold.

High trace methods can be applied to random hypergraphs with a proper
definition of walks on hypergraphs.

Applicable to non-uniform hypergraphs. Possible application in sparse tensor
completion.

Open problem: impossibility for any algorithm below the generalized
Kesten-Stigum threshold.

Thank You!
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