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Abstract
We give a procedure to construct trisection for closed manifolds generated by colored tensor models

without restrictions on the number of simplices in the triangulation, therefore generalising previous works
of crystallisations [Casali, Cristofori 2019] and of PL-manifolds [Bell, Hass, Rubinstein, Tillmann 2017].

Introduction
Tensor models are a random geometric approach to quantum gravity, which takes the path integral approach
with an interpretation that summing over all geometries and topologies with suitable weights should give clas-
sical geometry of our universe. d+1-colored tensor models with d-indices, in particular, are shown to represent
fluctuating d-dimensional piecewise-linear (PL) pseudo-manifolds1 via their perturbative expansion in Feyn-
man graphs encoding topological spaces. It is then essential to understand the topological and geometrical
structure of the PL pseudo-manifolds that colored tensor models generate in order to understand better their
path integral formulation.

Organised by the Gurau degree (ω), colored tensor models admit a 1/N expansion of the partition function
(∼
∑
G N
−ω(G)) with a resummable leading order (ω = 0) , called melon graphs, exhibiting critical behavior

and a continuum limit. Melons are a subclass of spheres and in the continuum limit are shown to behave like
branched polymers (tree) with Hausdorff dimension 2 and the spectral dimension 4/3. Reflecting and moti-
vated by quantum gravity, we dream of a possibility of finding a new parameter for colored tensor model to
classify the graphs in a new large N limit, which may then give some new critical behavior. The Gurau degree
arises naturally in the construction of Heegaard splitting of three-dimensional PL manifolds generated by col-
ored tensor models with 3-indices. In four dimensions, there exists analogous topological concept, trisections,
introduced by Gay and Kirby in 2012. Trisections are a novel tool to describe 4−manifolds by revealing the
nested structure of lower dimensional submanifolds. In particular, the trisection genus of a 4−manifold is a
topological invariant. In this work, therefore, we formulate trisections in colored tensor models with 4-indices.

Tensor models
Consider combinatorially nonlocal 0-dimensional field theories of size N random tensors with d-indices T :
ZdN → C (to make it an orientable manifold), where the action for tensors with 4-indices is given by S[T, T̄ ] =

N4/2
(∑5
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)
, with aij = aji and the proba-

bility measure is given by dµ =
∫
N
∏
c,ai dT

i
a1a2a3a4dT̄

i
a1a2a3a4 e−S[T,T̄ ] . The tensors transform under

the symmetry of U(N)4: Ta1a2a3a4 → T ′a1a2a3a4 = TlmnpU
l
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Figure 1: d-simplices in d = 2, 3, 4 dimensions, where we embedded d+1-colored graphs. Stranded representation (left) and color repre-
sentation (right). (d+ 1)-colored graphs (also, called graph encoding manifolds) are dual to simplicial triangulations of PL d-dimensional
pseudo-manifolds.

Handle decomposition (in general d-dimensions) and Heegaard split-
tings (in 3-dimensions) in TOP category.
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Heegaard Splitting
An i-handle can be thought of as a thickening of Di, and is therefore Di × Dd−i glued along Si−1 × Dd−i.
In Morse theory, passing through an index i critical point means attaching an i-handle, i.e., topology changes
when passing an i-handle. Morse theory picture naturally provides us with the handle decomposition of a
closed d-manifold: M (d) = 0-handle ∪ g 1-handles ∪ h 2-handles ∪ · · · ∪ d-handle.

e.g., in 3-dimensions,

0-handle 1-handle 3-handle 0-h ∪ 1-h 0-h ∪ 2-h2-handle
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A special case is when H(d) = 0-handle ∪ g 1-handles (therefore with a
boundary), then H(d) is called 1-handlebody with its genus defined as g.
In a 1-handlebody, there is a spine (i.e., a graph, oe equivalently a set of
vertices and edges) where the manifold collaspses onto.

Definition. A Heegaard splitting of a compact connected oriented 3-manifold M (3) is the triple (Σ, H1, H2),
where Σ = ∂H1 = ∂H2 = H1 ∩ H2, called a Heegard surface, is a compact connected closed ori-
ented 2-dimensional surface, while H1 and H2 are 1-handlebodies whose union is M (3) = H1 ∪ H2.
g(Σ) = g(H1) = g(H2). min(g) is a topological invariant.

One can representM (3) with a Heegaard diagram which
consists of a Heegaard surface and α and β attaching
curves,e.g., .

Two diagrams for a givenM (3) can be transformed into each other by
a finite sequence of moves of stabilisations/handle-cancelations and
handle slides. In particular, stabilisations can be visualised as

Σg Σ′g+1]S3

M (3) M (3)]S3 .

Jackets as Heegaard surfaces (in PL category). [Ryan 2011][Gagliardi 1981]

Given a colored graph G and the set of its its jackets, we define a combinatorial invariant, called Gurau degree
(non-negative integer), as the sum of genera of all jackets of G, ω(G) =

∑
J gJ , where a jacket Jη is an

embedded 2-subcomplex of a colored graph G, labeled by a permutation η of the set {0, . . . , d} such that Jη
and G have the same node and line sets and the bicolored cycle (face) set of Jη is a subset of that of G.

The elementary melon graph for tensor mod-
els with 3-indices, and its three jackets, in
stranded representation:
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Trisections (in 4 dimensions) in TOP category. [Gay, Kirby 2012]

A trisection is defined by

•M (4) = X
(4)
1 ∪X

(4)
2 ∪X

(4)
3

•H(3)
ij = X

(4)
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(4)
j and ∂X(4)
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(3)
ij ∪H

(3)
ik .

• Σ(2) = X
(4)
1 ∩X

(4)
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(4)
3 is a compact surface.

Some remarks follow:

•All X(4)
i and H(3)

ij are 1-handlebodies.

• (H
(3)
ij , H

(3)
jk ,Σ

(2)) forms a Heegaard splitting.

• g(H
(3)
12 ) = g(H

(3)
13 ) = g(H

(3)
23 ) = g(Σ(2)).

•min g(Σ(2)) is a topological invariant.

One can represent M (4) in a trisection diagram with a
central 2-d surface and α, β, γ-attaching curves, e.g.,

.

Again, one can perform stabilisation,
which will not alter the overall 4-
manifold nor spoil the trisection.
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H ′ij
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Extending theorem (Montesinos). Given a 4-dimensional 1-handlebody X of genus g and a homeomorphism
φ : ∂X → ∂X , there exists a unique homeomorphism Φ : X → X extending φ.

Trisections, then, allow us to fully determine M (4) by the three 3-dimensional 1-handlebodies H(3)
ij which in

turn, can be represented by means of Heegaard diagrams.

Constructing trisections based on colored tensor model graphs in PL category.
1. Start with mapping a 4-simplex ∆(4) onto a triangle by partitioning the sets of vertices in three sets
P0 = {v0̂}, P1 = {v1̂, v2̂} and P2 = {v3̂, v4̂} [Bell, Hass, Rubinstein, Tillmann, 2017; Casali, Cristofori,
2019]
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Take two 4-simplices σa and σb.

We notice the nested Heegaard splitting-like structures inside a trisection-like structure already present in a
single 4-simplex, by pointing out the triples (s,Q∆(4),R∆(4)), (s,Q∆(4),D∆(4)), and (s,R∆(4),D∆(4)). Notice
that s = ∆(4) ∩K(J (B0̂)), where K(J (B0̂)) is the realisation of the jacket of 0̂-bubbles.
The problem is that each of the 3-dimensional pieces which are to be H(3)

ij s in a trisection is not connected
once we look at the induced structure on a whole colored tensor model graph.

2. So, carve out a neighborhood of 0-color lines of the colored graph which we embed. [Martini, Toriumi
2021].

For example, let us take Dσa and
Dσb, from where we carved out
such a neighborhood.

central surface

γ curves
spine

.

e.g., three such objects together

γ curve
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central surface

.

Therefore, we connected the isolated duals of 4-bubbles via the carving opera-
tion described above, which really amount to performing boundary connected
sum which does not spoil the trisection structure, or stabilisations in the case that
the 4-bubbles are connected.

Now let us analyse the genus of the central surface of the trisection just constructed above. Obtain a graph G̃
derived from a colored graph G, by contracting all the 0̂−bubbles to points which will then become the nodes
of G̃, whose number is |V 0̂|. The genus of the central surface is given by

gc =

|V 0̂|∑
a=1

gJ (B0̂
a)

+ L0 ⇒
15∑
c=1

gc = ω(G) + 3(4p + 1) ,

where L0 the number of independent loops of G̃, and 2p is the number of nodes of the original colored graph
G.

Drawing trisection diagrams based on colored tensor model graphs in PL category.
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Conclusions
We formulated a construction on trisections on manifolds realised by colored tensor models with 4-indices. We
found in this construction, a central surface of a trisection is realised by a jacket of a 4−bubble. Some draw-
backs in relation to initial hope is that in tensor models as a random geometric approach to quantum gravity,
one is interested in taking a continuum limit, where we shall send the number of triangulations to infinity, i.e.,
the graph will become large, therefore, gc tends large as well, being far away from the topologically invariant
trisection genus. It is also ambiguous whether classifying graphs according to gc is meaningful.

1Pseudo-manifolds here are characterised by non-branching, strongly-connected, and pure to ensure a rather nice property for d-dimensional simplicial complex. However, K(Bî) may not represent a manifold, i.e., K(Bîj) may not be a sphere.


