New techniques for bounding stabilizer rank

Benjamin Lovitz* Vincent Steffan**

*Institute for Quantum Computing, University of Waterloo

**QMATH, University of Copenhagen

Random tensors at CIRM 2022

March 18, 2022

arXiv:2110.07781

Computational basis

• Let $\{|0\rangle, |1\rangle\} \subseteq \mathbb{C}^2$ be the computational basis for \mathbb{C}^2

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

• Let $\{|x\rangle: x \in \mathbb{F}_2^n\} \subseteq (\mathbb{C}^2)^{\otimes n}$ be the computational basis for $(\mathbb{C}^2)^{\otimes n}$

$$|00\rangle = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \qquad |01\rangle = \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix} \qquad |10\rangle = \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix} \qquad |11\rangle = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix}$$

- A state is a unit vector in $(\mathbb{C}^2)^{\otimes n}$ (mod phase, i.e. an element of \mathbb{P}^{2^n-1}).
- We often omit normalization.
- States in \mathbb{C}^2 are called qubits.
- States are denoted $|\psi\rangle$, $|\phi\rangle$, etc.
- $\langle \psi |$ denotes conjugate-transpose of $|\psi \rangle$

Quantum circuits

General framework:

- 1. Prepare a computational basis state $|0 \cdots 0\rangle \in (\mathbb{C}^2)^{\otimes n}$.
- **2.** Apply a unitary matrix $U|0 \cdots 0\rangle$
- **3.** Measure in the computational basis. For $x \in \mathbb{F}_2^n$, $p(x) = |\langle x | U | 0 \cdots 0 \rangle|^2$.

Quantum circuits

General framework:

- **1.** Prepare a computational basis state $|0 \cdots 0\rangle \in (\mathbb{C}^2)^{\otimes n}$.
- **2.** Apply a unitary matrix $U|0 \cdots 0\rangle$
- 3. Measure in the computational basis. For $x \in \mathbb{F}_2^k$, $p(x) = ||(\langle x | \otimes \mathbb{I})U|0 \cdots 0 \rangle ||^2$

 $\sim k \leq n$

Quantum circuits

General framework:

- 1. Prepare a computational basis state $|0\rangle \in (\mathbb{C}^2)^{\otimes n}$.
- **2.** Apply a unitary matrix $U|0\rangle$
- 3. Measure in the computational basis. For $x \in \mathbb{F}_2^k$, $p(x) = ||(\langle x | \otimes \mathbb{I})U | 0 \rangle ||^2$

This talk: Classical simulation of Clifford+T circuits via stabilizer rank

This talk: Classical simulation of Clifford+T circuits via stabilizer rank

Classical simulation of quantum circuits

Question: Given a classical description of a quantum circuit

Can it be simulated efficiently on a classical computer?

Types of simulation

• Strong simulation:

Compute p(x) for all $x \in \mathbb{F}_2^k$.

• <u>*e*-Strong simulation</u>:

Find a probability vector \tilde{p} such that $(1 - \epsilon)p(x) \le \tilde{p}(x) \le (1 + \epsilon)p(x)$ for all $x \in \mathbb{F}_2^k$.

Weak simulation:

Sample elements of $x \in \mathbb{F}_2^k$ from a probability distribution \tilde{p} such that $\|\tilde{p} - p\|_1 \le \epsilon$

This talk: Classical simulation of Clifford+T circuits via stabilizer rank

Clifford circuits

The Clifford group is the group of unitaries $U: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$ composed of Clifford gates

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \qquad CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

[Gottesman-Knill 98]: Clifford circuits can be efficiently simulated.

Clifford+T circuits

The Clifford+T group is the unitary group $U: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$ composed of Clifford gates

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \qquad CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

and T-gates

$$\mathbf{T} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}.$$

<u>Motivation [Bravyi-Kitaev 05]</u>: The Clifford+T group is "universal" for quantum computation ... i.e. its closure is all unitaries.

Classical simulation of Clifford+T circuits

<u>Question:</u> Given a classical description of a Clifford+T circuit

Can it be simulated efficiently on a classical computer?

Classical simulation of Clifford+T circuits

<u>Question:</u> Given a classical description of a Clifford+T circuit

Can it be simulated efficiently on a classical computer?

This talk: Classical simulation of Clifford+T circuits via stabilizer rank

Partial answer: Stabilizer rank

- A state $|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}$ is a stabilizer state if $|\phi\rangle = U|0\rangle^{\otimes n}$ for some Clifford circuit U.
- The stabilizer rank of a state $|\psi\rangle \in (\mathbb{C}^2)^{\otimes n}$, denoted $\chi(|\psi\rangle)$, is the minimum number r for which

$$|\psi
angle = \sum_{i=1}^{r} c_i |\phi_i
angle$$

for some $c_i \in \mathbb{C}$ and $|\phi_i\rangle$ stabilizer states.

• The δ -approximate stabilizer rank of $|\psi\rangle$ is $\chi_{\delta}(|\psi\rangle) = \min\{\chi(|\mu\rangle): |||\psi\rangle - |\mu\rangle|| \le \delta\}.$

Partial answer: Stabilizer rank $|H\rangle = |0\rangle + (1 + \sqrt{2})|1\rangle \approx |0\rangle + 2.41|1\rangle$

[Bravyi-Smith-Smolin 16, Bravyi-Gosset 16]: A Clifford+T circuit with *n* T-gates can be simulated...

• <u>Strongly</u> with cost quadratic in $\chi(|H\rangle^{\otimes n})$. Compute p(x) for all $x \in \mathbb{F}_2^k$ $|0\rangle$ $|0\rangle$ $|0\rangle$ $|0\rangle$ $|0\rangle$ $|0\rangle$ $|0\rangle$ $|0\rangle$ $|0\rangle$

$$p(x) = ||(\langle x | \otimes \mathbb{I})U | 0 \rangle^{\otimes n} ||^2$$

- <u> ϵ -Strongly</u> with cost linear in $\chi(|H\rangle^{\otimes n})$. Find a probability vector \tilde{p} such that $(1 - \epsilon)p(x) \le \tilde{p}(x) \le (1 + \epsilon)p(x)$
- <u>Weakly</u> with cost linear in $\chi_{\delta}(|H\rangle^{\otimes n})$.

Sample elements of $x \in \mathbb{F}_2^k$ from a probability distribution \tilde{p} such that $\|\tilde{p} - p\|_1 \le \epsilon$

Known bounds on stabilizer rank χ(|H)^{⊗n})

• [Huang-Newman-Szegedy 20]: $\chi(|H\rangle^{\otimes n})$ super-polynomial unless P=NP.

 $\chi(|H\rangle^{\otimes n}) \ge \Omega(\sqrt{n}).$

 $\chi(|H\rangle^{\otimes n}) \geq \Omega(n).$

- [Bravyi-Smith-Smolin 16]:
- [Peleg-Shpilka-Volk 21]:
- [Qassim-Pashayan-Gosset 21]: $\chi(|H\rangle^{\otimes n}) \leq 2^{\alpha n}$, where $\alpha = \frac{1}{4}\log_2(3)$.

 $\chi_{\delta}(|H\rangle^{\otimes n})$

• [Peleg-Shpilka-Volk 21]:

There exists $\delta > 0$ such that

[Bravyi-Gosset 16]:

This talk: Alternate proofs up to log factor

$$\chi_{\delta}(|H\rangle^{\otimes n}) \ge \Omega(\sqrt{n}/\log n)$$

$$\chi_{\delta}(|H\rangle^{\otimes n}) \le O\left(\frac{1}{\delta^{2}}2^{\alpha m}\right), \text{ where } \alpha \approx 0.228.$$

Rest of talk

Lower bounds

- $\chi(|H\rangle^{\otimes n}) \ge \Omega(n/\log n).$ There exists $\delta > 0$ such that $\chi_{\delta}(|H\rangle^{\otimes n}) \ge \Omega(\sqrt{n}/\log n).$

Upper bounds

Generic stabilizer rank

Image: https://fishingbooker.com/blog/california-state-fish-golden-trout-garibaldi/

Match [Peleg, Shpilka, Volk 22] up to log factor

<u>Fact:</u> If $|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}$ is a stabilizer state, then the coordinates of $|\phi\rangle$ are $\{0, \pm 1, \pm i\}$ (up to normalization).

Theorem [Dehaene, De Moor 03]:

 $|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}$ is a stabilizer state $\Leftrightarrow |\phi\rangle = \sum_{x \in A} i^{l(x)} (-1)^{q(x)} |x\rangle$, where $A \subseteq \mathbb{F}_2^n$ is an affine linear subspace $l: \mathbb{F}_2^n \to \mathbb{F}_2$ is a linear function $q: \mathbb{F}_2^n \to \mathbb{F}_2$ is a quadratic polynomial

Subset-sum representations

- Let $\alpha \in \mathbb{C}^k$, $\beta \in \mathbb{C}^r$. We say β is a subset-sum representation of α if each α_j is equal to the sum of some subset of $\{\beta_1, \dots, \beta_r\}$.
- Example: $\beta = (1,2)$ is a subset-sum representation of $\alpha = (1,2,3)$.
- <u>Example:</u> If $|\psi\rangle = \sum_{i=1}^{r} c_i |\phi_i\rangle$ is a stabilizer decomposition, then $\beta = (c_1, \dots, c_r, -c_1, \dots, -c_r, ic_1, \dots, ic_r, -ic_1, \dots, -ic_r) \in \mathbb{C}^{4r}$

is a subset-sum representation of $|\psi\rangle$.

 $|\phi_i\rangle$ stabilizer \Rightarrow coordinates are in $\{0, \pm 1, \pm i\}$

 $\Rightarrow \chi(|\psi\rangle) \geq \frac{1}{4} \cdot \text{(the size of the smallest subset-sum rep of }|\psi\rangle)$

Lower bounds on the size of a subset-sum rep

- Let $\alpha \in \mathbb{C}^k$, $\beta \in \mathbb{C}^r$. We say β is a subset-sum representation of α if each α_j is equal to the sum of some subset of $\{\beta_1, \dots, \beta_r\}$.
- Trivially, $r \ge \log_2 k$, since $\{\beta_1, \dots, \beta_r\}$ has just 2^r different subsets.

• <u>Theorem [Moulton 01]</u>: If $2|\alpha_j| \le |\alpha_{j+1}|$ for all $j \in \{1, ..., k-1\}$, then $r \ge k/\log_2 k$. Linear in k, instead of logarithmic!

• Example: If $\alpha = (2^1, 2^2, \dots, 2^k)$, then $r \ge k/\log_2 k$

Lower bounds on the size of a subset-sum rep

- Let $\alpha \in \mathbb{C}^k$, $\beta \in \mathbb{C}^r$. We say β is a subset-sum representation of α if each α_j is equal to the sum of some subset of $\{\beta_1, \dots, \beta_r\}$.
- Trivially, $r \ge \log_2 k$, since $\{\beta_1, \dots, \beta_r\}$ has just 2^r different subsets.

 $\sim \alpha$ exponentially increasing

- <u>Theorem [Moulton 01]</u>: If $2|\alpha_j| \le |\alpha_{j+1}|$ for all $j \in \{1, ..., k-1\}$, then $r \ge k/\log_2 k$. Linear in k, instead of logarithmic!
- Example: If $\alpha = (2^1, 2^2, \dots, 2^k)$, then $r \ge k/\log_2 k$
- <u>Theorem [Lovitz-Steffan]</u>: If the coordinates of $|\psi\rangle$ contain an exponentially increasing sequence of length k, then $\chi(|\psi\rangle) \ge k/(4\log_2 k)$.

Lower bound on stabilizer rank

• <u>Theorem [Lovitz-Steffan]</u>: If the coordinates of $|\psi\rangle$ contain an exponentially increasing sequence of length k, then $\chi(|\psi\rangle) \ge k/(4\log_2 k)$.

<u>Corollary [Lovitz-Steffan]</u>: $\chi(|H\rangle^{\otimes n}) \ge n/(4 \log_2 n)$.

Proof: Since $|H\rangle \approx |0\rangle + 2.41|1\rangle$,

 $|H\rangle^{\otimes n} \approx |0\cdots 0\rangle + (2.41)(|0\cdots 01\rangle + \cdots + |10\cdots 0\rangle) + \cdots + (2.41)^n |1\cdots 1\rangle.$

 \Rightarrow $|H\rangle^{\otimes n}$ contains the exponentially increasing sequence (2.41,2.41², ..., 2.41ⁿ)

 $\Rightarrow \chi(|H\rangle^{\otimes n}) \ge n/(4 \log_2 n)$ by boxed theorem.

Lower bound on approximate stabilizer rank

- The δ -approximate stabilizer rank of a normalized state $|\psi\rangle$ is $\chi_{\delta}(|\psi\rangle) = \min\{\chi(|\mu\rangle): |||\psi\rangle |\mu\rangle|| \le \delta\}.$
- <u>Theorem [Lovitz-Steffan]</u>: There exists $\delta > 0$ for which $\chi_{\delta}(|H\rangle^{\otimes n}) \ge \sqrt{n}/(4\log_2\sqrt{n})$.

Proof sketch: Show that for δ small enough, any state that is δ -close to $|H\rangle^{\otimes n}$ must contain an exponentially increasing sequence of length \sqrt{n} (Use De Moivre-Laplace).

Result follows from boxed theorem.

Super-linear lower bound on $\chi(|H\rangle^{\otimes n})$?

[BSS16] idea:

The T-count of a state $|\psi\rangle$ is the minimum number n of T gates needed to prepare $|\psi\rangle$ with a Cliff+T circuit U

<u>Fact:</u> If $|\psi\rangle$ has T-count *n*, then $\chi(|\psi\rangle) \leq \chi(|H\rangle^{\otimes n})$. *Proof:*

Super-linear lower bound on $\chi(|H\rangle^{\otimes n})$?

[BSS16] idea:

The T-count of a state $|\psi\rangle$ is the minimum number n of T gates needed to prepare $|\psi\rangle$ with a Cliff+T circuit U

Fact: If $|\psi\rangle$ has T-count n, then $\chi(|\psi\rangle) \leq \chi(|H\rangle^{\otimes n})$. Proof: Let $r = \chi(|H\rangle^{\otimes n})$ and $|H\rangle^{\otimes n} = \sum_{i=1}^{r} c_i |\phi_i\rangle$. $|\psi\rangle = \widetilde{U}(|0\rangle \otimes |H\rangle^{\otimes n}) = \sum_{i=1}^{r} c_i \widetilde{U}(|0\rangle \otimes |\phi_i\rangle)$... so $\chi(|\psi\rangle) \leq r$. Stabilizer state!

Super-linear lower bound on $\chi(|H\rangle^{\otimes n})$? Fact: If $|\psi\rangle$ has T-count *n*, then $\chi(|\psi\rangle) \leq \chi(|H\rangle^{\otimes n})$.

[BSS16] idea: For each n, if there exists a state $|\psi_n\rangle$ that:

1. Has T-count n2. Satisfies $\chi(|\psi_n\rangle) \ge n^{1+\epsilon}$

... then
$$\chi(|H\rangle^{\otimes n}) \ge \chi(|\psi_n\rangle) \ge n^{1+\epsilon} - Super-linear$$

1 2

Super-linear lower bound on $\chi(|H\rangle^{\otimes n})$? Fact: If $|\psi\rangle$ has T-count *n*, then $\chi(|\psi\rangle) \leq \chi(|H\rangle^{\otimes n})$.

[BSS16] idea: For each n, if there exists a state $|\psi_n\rangle$ that:

1. Has T-count *n*

2. Every subset-sum rep of $|\psi_n\rangle$ has size at least $n^{1+\epsilon}$

... then
$$\chi(|H\rangle^{\otimes n}) \ge \chi(|\psi_n\rangle) \ge \frac{1}{4}n^{1+\epsilon}$$
 Super-linear

[Beverland-Campbell-Howard-Kliuchnikov 2020]: A state of T-count n can have an exponentially increasing sequence of length at most O(n).

Rest of talk

Lower bounds

- $\chi(|H\rangle^{\otimes n}) \ge \Omega(n/\log n).$ There exists $\delta > 0$ such that $\chi_{\delta}(|H\rangle^{\otimes n}) \ge \Omega(\sqrt{n}/\log n).$

Upper bounds

Generic stabilizer rank

Image: https://fishingbooker.com/blog/california-state-fish-golden-trout-garibaldi/

Match [Peleg, Shpilka, Volk 22] up to log factor

Upper bounds: Generic stabilizer rank

- Let $\chi_n = \max\{\chi(|\psi\rangle^{\otimes n}) : |\psi\rangle \in \mathbb{C}^2\}$ be the *n*-th generic stabilizer rank.
- $\chi_n \geq \chi(|H\rangle^{\otimes n})$
- <u>Fact</u>: $\chi(|\psi\rangle^{\otimes n}) = \chi_n$ for all but finitely many $|\psi\rangle \in \mathbb{C}^2$ (up to scale).
- <u>Proposition [Lovitz-Steffan]</u>: $\chi_n = O(2^{n/2})$ (Slight improvement of recent bound $O((n + 1)2^{n/2})$ of [Qassim-Pashayan-Gosset 21])
- <u>Proposition [Lovitz-Steffan]</u>: There exists a single set of χ_n stabilizer states that can be superimposed to produce any state of the form $|\psi\rangle^{\otimes n}$.

Summary

<u>Classical simulation of Clifford+T circuits via stabilizer rank</u>

Lower bounds

- $\chi(|H\rangle^{\otimes n}) \ge \Omega(n/\log n).$
- Match [Peleg, Shpilka, Volk 22] up to log factor
- There exists $\delta > 0$ such that $\chi_{\delta}(|H\rangle^{\otimes n}) \ge \Omega(\sqrt{n}/\log n)$.

Upper bounds

Generic stabilizer rank

Better bounds?

https://thumbs.dreamstime.com/b/goldfish-gold-fish-bowl-cute-cartoon-character-happy-145738808.jpg

New techniques for bounding stabilizer rank

Benjamin Lovitz* Vincent Steffan**

*Institute for Quantum Computing, University of Waterloo

**QMATH, University of Copenhagen

Random tensors at CIRM 2022

March 18, 2022

arXiv:2110.07781

