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Computational basis
• Let { 0 , 1 } ⊆ ℂ!be the computational basis for ℂ!

0 = 1
0 1 = 0

1

• Let { 𝑥 : 𝑥 ∈ 𝔽!"} ⊆ (ℂ!)⊗" be the computational basis for (ℂ!)⊗"
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•A state is a unit vector in (ℂ!)⊗# (mod phase, 
i.e. an element of ℙ!!$%).

•We often omit normalization.

•States in ℂ! are called qubits.

•States are denoted 𝜓 , |𝜙⟩ , etc.

•⟨𝜓| denotes conjugate-transpose of |𝜓⟩



Quantum circuits
General framework:
1. Prepare a computational basis state |0⋯0⟩ ∈ (ℂ!)⊗" .
2. Apply a unitary matrix 𝑈|0⋯0⟩
3. Measure in the computational basis. For 𝑥 ∈ 𝔽!", 𝑝 𝑥 = ⟨𝑥 𝑈 0⋯0⟩ !.



Quantum circuits
General framework:
1. Prepare a computational basis state 0⋯0 ∈ (ℂ!)⊗" .
2. Apply a unitary matrix 𝑈 0⋯0
3. Measure in the computational basis. For 𝑥 ∈ 𝔽!$, 𝑝 𝑥 = ||( 𝑥 ⊗ 𝕀 𝑈|0⋯0⟩ ||!

𝑘 ≤ 𝑛



Quantum circuits
General framework:
1. Prepare a computational basis state |0⟩ ∈ (ℂ!)⊗" .
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This talk: Classical simulation of Clifford+T
circuits via stabilizer rank
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Classical simulation of quantum circuits

Question: Given a classical description of a quantum circuit

Can it be simulated efficiently on a classical computer?
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Types of simulation
• Strong simulation:

Compute 𝑝 𝑥 for all 𝑥 ∈ 𝔽!$.

• 𝜖-Strong simulation:
Find a probability vector 9𝑝 such that

1 − 𝜖 𝑝 𝑥 ≤ 9𝑝 𝑥 ≤ 1 + 𝜖 𝑝 𝑥

• Weak simulation:
Sample elements of 𝑥 ∈ 𝔽!$ from a probability distribution 9𝑝 such that 

9𝑝 − 𝑝 % ≤ 𝜖
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𝑥 ∈ 𝔽!"

𝑝 𝑥 = ||( 𝑥 ⊗ 𝕀 𝑈 0 ⊗$ ||!

for all 𝑥 ∈ 𝔽!$.



This talk: Classical simulation of Clifford+T
circuits via stabilizer rank



Clifford circuits

The Clifford group is the group of unitaries 𝑈: ℂ! ⊗" → ℂ! ⊗" composed of 
Clifford gates

𝐻 =
1
2
1 1
1 −1 𝑆 = 1 0

0 𝑖 𝐶𝑁𝑂𝑇 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

[Gottesman-Knill 98]: Clifford circuits can be 
efficiently simulated.



Clifford+T circuits

The Clifford+T group is the unitary group 𝑈: ℂ! ⊗" → ℂ! ⊗" composed of 
Clifford gates

𝐻 =
1
2
1 1
1 −1 𝑆 = 1 0

0 𝑖 𝐶𝑁𝑂𝑇 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

and T-gates

Motivation [Bravyi-Kitaev 05]: The Clifford+T group is “universal” for quantum 
computation                                 … i.e. its closure is all unitaries.

T = 1 0
0 𝑒&'/) .



Classical simulation of Clifford+T circuits

Question: Given a classical description of a Clifford+T circuit

Can it be simulated efficiently on a classical computer?
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This talk: Classical simulation of Clifford+T
circuits via stabilizer rank



• A state |𝜙⟩ ∈ ℂ! ⊗" is a stabilizer state if 𝜙 = 𝑈 0 ⊗" for some 
Clifford circuit 𝑈.

• The stabilizer rank of a state 𝜓 ∈ ℂ! ⊗" , denoted 𝜒(|𝜓⟩),
is the minimum number 𝑟 for which

𝜓 =L
&*%

+

𝑐&|𝜙&⟩

for some 𝑐& ∈ ℂ and |𝜙&⟩ stabilizer states.

• The 𝛿-approximate stabilizer rank of |𝜓⟩ is
𝜒,(|𝜓⟩) = min{𝜒(|𝜇⟩): 𝜓 − 𝜇 ≤ 𝛿}.

Partial answer: Stabilizer rank



Partial answer: Stabilizer rank
[Bravyi-Smith-Smolin 16, Bravyi-Gosset 16]: A Clifford+T circuit with 𝑛 T-gates
can be simulated…

• Strongly with cost quadratic in 𝜒 |𝐻⟩⊗" .
Compute 𝑝 𝑥 for all 𝑥 ∈ 𝔽!$

• 𝜖-Strongly with cost linear in 𝜒 |𝐻⟩⊗" .
Find a probability vector 1𝑝 such that 1 − 𝜖 𝑝 𝑥 ≤ 1𝑝 𝑥 ≤ 1 + 𝜖 𝑝 𝑥

• Weakly with cost linear in 𝜒, 𝐻 ⊗" .
Sample elements of 𝑥 ∈ 𝔽!" from a probability distribution 1𝑝 such that 

1𝑝 − 𝑝 % ≤ 𝜖

𝐻 = 0 + 1 + 2 1 ≈ 0 + 2.41|1⟩
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Proof idea

T = • S

|Hi H S†
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[GK98]: Clifford circuits can 
be efficiently simulated.
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|𝜓⟩

̃

Cliff

T𝑈

Let 𝑟 = 𝜒 𝐻 ⊗" and 𝐻 ⊗" = ∑&*%+ 𝑐&|𝜙&⟩.

𝜓 = T𝑈(|0⟩ ⊗ 𝐻 ⊗") = ∑&*%+ 𝑐& T𝑈 |0⟩ ⊗ |𝜙&⟩

By [GK98], can simulate measurements on each efficiently.
=TT𝑈&|0⟩

[GK98]: Clifford circuits can 
be efficiently simulated.



Known bounds on stabilizer rank
𝜒 𝐻 ⊗"

• [Huang-Newman-Szegedy 20]: 𝜒 𝐻 ⊗" super-polynomial unless P=NP.
• [Bravyi-Smith-Smolin 16]: 𝜒 𝐻 ⊗" ≥ Ω( 𝑛).
• [Peleg-Shpilka-Volk 21]: 𝜒 𝐻 ⊗" ≥ Ω(𝑛).

• [Qassim-Pashayan-Gosset 21]: 𝜒 𝐻 ⊗" ≤ 2-", where 𝛼 = %
)
log! 3 .

𝜒, 𝐻 ⊗"

• [Peleg-Shpilka-Volk 21]:
There exists 𝛿 > 0 such that      𝜒, 𝐻 ⊗" ≥ Ω 𝑛/ log 𝑛

• [Bravyi-Gosset 16]: 𝜒, 𝐻 ⊗" ≤ 𝑂 %
,!
2-. , where 𝛼 ≈ 0.228.

This talk: Alternate proofs up to log factor



Rest of talk
Lower	bounds
• 𝜒 𝐻 ⊗" ≥ Ω 𝑛/ log 𝑛 .
• There exists 𝛿 > 0 such that 𝜒, 𝐻 ⊗" ≥ Ω 𝑛/ log 𝑛 .

Upper bounds
• Generic stabilizer rank

Image: https://fishingbooker.com/blog/california-state-fish-golden-trout-garibaldi/

Match [Peleg, Shpilka, Volk 22] up to log factor



Fact: If 𝜙 ∈ (ℂ!)⊗# is a stabilizer state,
then the coordinates of 𝜙 are 
{0, ±1,±𝑖} (up to normalization).



Theorem [Dehaene, De Moor 03]: 

𝜙 ∈ (ℂ!)⊗# is a stabilizer state ⟺ 𝜙 = ∑$∈& 𝑖' $ −1 ( $ 𝑥 ,

where           𝐴 ⊆ 𝔽!# is an affine linear subspace
𝑙: 𝔽!# → 𝔽! is a linear function
𝑞: 𝔽!# → 𝔽! is a quadratic polynomial



Subset-sum representations
• Let 𝛼 ∈ ℂ$ , 𝛽 ∈ ℂ+. We say 𝛽 is a subset-sum representa`on of 𝛼 if each 𝛼/

is equal to the sum of some subset of {𝛽%, … , 𝛽+}.

• Example: 𝛽 = (1,2) is a subset-sum representa`on of 𝛼 = 1,2,3 .

• Example: If 𝜓 = ∑&*%+ 𝑐&|𝜙&⟩ is a stabilizer decomposi`on, then       
𝛽 = 𝑐%, … , 𝑐+ , −𝑐%, … , −𝑐+ , 𝑖𝑐%, … , 𝑖𝑐+ , −𝑖𝑐%, … , −𝑖𝑐+ ∈ ℂ)+

is a subset-sum representa`on of |𝜓⟩.
|𝜙&⟩ stabilizer ⇒coordinates are in {0, ±1,±𝑖}

⇒ 𝜒 |𝜓⟩ ≥ !
"
⋅ (the size of the smallest subset-sum rep of 𝜓 )



• Let 𝛼 ∈ ℂ$ , 𝛽 ∈ ℂ+. We say 𝛽 is a subset-sum representation of 𝛼 if each 𝛼/
is equal to the sum of some subset of {𝛽%, … , 𝛽+}.

• Trivially, r ≥ log! 𝑘, since {𝛽%, … , 𝛽+} has just 2+ different subsets.

• Theorem [Moulton 01]: If 2 𝛼/ ≤ 𝛼/0% for all 𝑗 ∈ {1, … , 𝑘 − 1}, then         
𝑟 ≥ 𝑘/log!𝑘.

• Example: If 𝛼 = (2%, 2!, … , 2$), then 𝑟 ≥ 𝑘/log!𝑘

𝛼 exponentially increasing

Linear in 𝑘, instead of logarithmic!

Lower bounds on the size of a subset-sum rep

2% 2! 2' 2( 2) 2* 2+ 2,

𝛽% 𝛽! 𝛽' 𝛽( 𝛽) 𝛽* 𝛽+



• Let 𝛼 ∈ ℂ$ , 𝛽 ∈ ℂ+. We say 𝛽 is a subset-sum representation of 𝛼 if each 𝛼/
is equal to the sum of some subset of {𝛽%, … , 𝛽+}.

• Trivially, r ≥ log! 𝑘, since {𝛽%, … , 𝛽+} has just 2+ different subsets.

• Theorem [Moulton 01]: If 2 𝛼/ ≤ 𝛼/0% for all 𝑗 ∈ {1, … , 𝑘 − 1}, then         
𝑟 ≥ 𝑘/log!𝑘.

• Example: If 𝛼 = (2%, 2!, … , 2$), then 𝑟 ≥ 𝑘/log!𝑘

• Theorem [Lovitz-Steffan]: If the coordinates of |𝜓⟩ contain an exponentially 
increasing sequence of length 𝑘, then 𝜒(|𝜓⟩) ≥ 𝑘/(4log! 𝑘).

𝛼 exponentially increasing

Linear in 𝑘, instead of logarithmic!

Lower bounds on the size of a subset-sum rep



Lower bound on stabilizer rank

• Theorem [Lovitz-Steffan]: If the coordinates of |𝜓⟩ contain an exponentially 
increasing sequence of length 𝑘, then 𝜒(|𝜓⟩) ≥ 𝑘/(4log! 𝑘).

Corollary [Lovitz-Steffan]: 𝜒(|𝐻⟩⊗") ≥ 𝑛/(4 log! 𝑛).

Proof:  Since 𝐻 ≈ 0 + 2.41 1 ,

𝐻 ⊗$ ≈ 0⋯0 + 2.41 0⋯01 +⋯+ 10⋯0 +⋯+ 2.41 $ 1⋯1 .

⇒ 𝐻 ⊗$ contains the exponentially increasing sequence (2.41,2.41!, … , 2.41$)

⇒ 𝜒(|𝐻⟩⊗$) ≥ 𝑛/(4 log! 𝑛) by boxed theorem.



Lower bound on approximate stabilizer rank

• The 𝛿-approximate stabilizer rank of a normalized state |𝜓⟩ is
𝜒,(|𝜓⟩) = min{𝜒(|𝜇⟩): 𝜓 − 𝜇 ≤ 𝛿}.

• Theorem [Lovitz-Steffan]: There exists 𝛿 > 0 for which    
𝜒,( 𝐻 ⊗") ≥ 𝑛/ 4 log! 𝑛 .

Proof sketch: Show that for 𝛿 small enough, any state that is 𝛿-close to 
𝐻 ⊗" must contain an exponentially increasing sequence of length 𝑛

(Use De Moivre-Laplace).

Result follows from boxed theorem.



Super-linear lower bound on 𝜒 𝐻 ⊗$ ?

[BSS16] idea:
The T-count of a state 𝜓 is the minimum number 𝑛 of 
T gates needed to prepare 𝜓 with a Cliff+T circuit 𝑈

Fact: If |𝜓⟩ has T-count 𝑛, then 𝜒(|𝜓⟩) ≤ 𝜒 𝐻 ⊗" .
Proof:

T = • S
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Super-linear lower bound on 𝜒 𝐻 ⊗$ ?

[BSS16] idea:
The T-count of a state 𝜓 is the minimum number 𝑛 of 
T gates needed to prepare 𝜓 with a Cliff+T circuit 𝑈

Fact: If |𝜓⟩ has T-count 𝑛, then 𝜒(|𝜓⟩) ≤ 𝜒 𝐻 ⊗" .
Proof: 
Let 𝑟 = 𝜒 𝐻 ⊗" and 𝐻 ⊗" = ∑&*%+ 𝑐&|𝜙&⟩.

𝜓 = T𝑈(|0⟩ ⊗ 𝐻 ⊗") = ∑&*%+ 𝑐& T𝑈 |0⟩ ⊗ |𝜙&⟩

… so 𝜒(|𝜓⟩) ≤ 𝑟. Stabilizer state!

0 ⊗ 𝐻 ⊗" U

...
...

...

8
>>>>>>>>><

>>>>>>>>>:

|yi

(9)

20

|𝜓⟩

|0⟩

|0⟩̃

Clif
f

|0⟩ U

...
...

...

8
>>>>>>>>><

>>>>>>>>>:

|yi

(9)

20

|𝜓⟩

Cliff+ 𝑛 T

T𝑈

𝑈



Super-linear lower bound on 𝜒 𝐻 ⊗$ ?

Fact: If |𝜓⟩ has T-count 𝑛, then 𝜒(|𝜓⟩) ≤ 𝜒 𝐻 ⊗" .

[BSS16] idea: For each 𝑛, if there exists a state 𝜓" that:

1. Has T-count 𝑛
2. Satisfies 𝜒(|𝜓"⟩) ≥ 𝑛%01

… then 𝜒 𝐻 ⊗" ≥ 𝜒(|𝜓"⟩) ≥ 𝑛%01
1 2

Super-linear



Super-linear lower bound on 𝜒 𝐻 ⊗$ ?

Fact: If |𝜓⟩ has T-count 𝑛, then 𝜒(|𝜓⟩) ≤ 𝜒 𝐻 ⊗" .

[BSS16] idea: For each 𝑛, if there exists a state 𝜓" that:

1. Has T-count 𝑛
2. Every subset-sum rep of 𝜓" has size at least 𝑛%01

… then 𝜒 𝐻 ⊗" ≥ 𝜒(|𝜓"⟩) ≥
%
)
𝑛%01

[Beverland-Campbell-Howard-Kliuchnikov 2020]: A state of T-count 𝑛 can have an 
exponenCally increasing sequence of length at most O 𝑛 .

1 2
Super-linear



Rest of talk
Lower	bounds
• 𝜒 𝐻 ⊗" ≥ Ω 𝑛/ log 𝑛 .
• There exists 𝛿 > 0 such that 𝜒, 𝐻 ⊗" ≥ Ω 𝑛/ log 𝑛 .

Upper bounds
• Generic stabilizer rank

Image: h:ps://fishingbooker.com/blog/california-state-fish-golden-trout-garibaldi/

Match [Peleg, Shpilka, Volk 22] up to log factor



Upper bounds: Generic stabilizer rank

• Let 𝜒" = max{𝜒 𝜓 ⊗" : 𝜓 ∈ ℂ!} be the 𝑛-th generic stabilizer rank.

• 𝜒" ≥ 𝜒 𝐻 ⊗"

• Fact: 𝜒 𝜓 ⊗" = 𝜒" for all but finitely many 𝜓 ∈ ℂ! (up to scale).

• Proposition [Lovitz-Steffan]: 𝜒" = 𝑂 2"/!

(Slight improvement of recent bound 𝑂( 𝑛 + 1 2$/!) of [Qassim-Pashayan-Gosset 21])

• Proposition [Lovitz-Steffan]: There exists a single set of 𝜒" stabilizer states 
that can be superimposed to produce any state of the form 𝜓 ⊗".



Summary
Classical	simulation	of	Clifford+T circuits	via	stabilizer	rank

Lower	bounds
• 𝜒 𝐻 ⊗" ≥ Ω 𝑛/ log 𝑛 .
• There exists 𝛿 > 0 such that 𝜒, 𝐻 ⊗" ≥ Ω 𝑛/ log 𝑛 .

Upper bounds
• Generic stabilizer rank

Better bounds?

Match [Peleg, Shpilka, Volk 22] up to log factor
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