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Computational basis

* Let {|0),|1)} € C?be the computational basis for C*
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e Let {|x): x € F%} € (C?)®™ be the computational basis for (€2)®"
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* A state is a unit vector in (C?*)®™ (mod phase,
. n__
i.e. an element of P% ~1).

*We often omit normalization.
e States in C? are called qubits.
*States are denoted |Y), |@) , etc.

* (1| denotes conjugate-transpose of |)



Quantum circults

General framework:

1. Prepare a computational basis state [0 --- 0) € (C?)®™,
2. Apply a unitary matrix U|0 --- 0)
3. Measure in the computational basis. For x € F%, p(x) = |{x|U|0 --- 0)]?.
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Quantum circults

General framework:

1. Prepare a computational basis state |0) € (C?)®™,
2. Apply a unitary matrix U|0)
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Classical simulation of guantum circuits

Question: Given a classical description of a quantum circuit
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Can it be simulated efficiently on a classical computer?



Types of simulation

e Strong simulation:

Compute p(x) for all x € FX. 10+

e ¢-Strong simulation:

Find a probability vector p such that

\

A

K
x € IF5

=y

p(x) = ||((x] ® DU|0)S™ ||

(1—-e)px) <px) <A +e)plx) forallx € FX.

e Weak simulation:

Sample elements of x € IF’Z‘ from a probability distribution p such that

1P —plly <€
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Clifford circuits

The Clifford group is the group of unitaries U: (C*)®" — (C?)®" composed of
Clifford gates

1 0 0 O
11 1 110 1o 1 0 0
H_\/_jll —1] S_[ol' CNOT =10 0 0 1
0 01 0

|Gottesman-Knill 98]: Clifford circuits can be
efficiently simulated.




Clifford+T circuits

The Clifford+T group is the unitary group U: (C?)®" - (C?)®" composed of
Clifford gates

, 1 0 0 O
1 O 0O 1 0 O
HZ\/_QH —11] S:[o i] CNOT = 8 8 (1) (1)
and T-gates
T = [(1) eig/z}] -

Motivation [Bravyi-Kitaev 05]: The Clifford+T group is “universal” for guantum
computation ... l.e. its closure is all unitaries.




Classical simulation of Clifford+T circuits

Question: Given a classical description of a Clifford+T circuit
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Classical simulation of Clifford+T circuits

Question: Given a classical description of a Clifford+T circuit
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Can it be simulated efficiently on a classical computer?
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Partial answer: Stabilizer rank

* Astate |¢p) € (C?)®™ s a stabilizer state if |¢p) = U|0)Y®™ for some
Clifford circuit U.

* The stabilizer rank of a state [¢) € (C?)®", denoted x(|y)),
is the minimum number r for which

r

)= ) cildy)

=1

for some ¢; € C and |¢;) stabilizer states.

* The §-approximate stabilizer rank of |) is

xs([¥)) = min{)(|u)): lly) — (Wl = 8}



Partial answer: Stabilizer rank [#) = [0) + (1 +v2)[1) = |0) + 2.41|1)

[Bravyi-Smith-Smolin 16, Bravyi-Gosset 16} A Clifford+T circuit with n T-gates
can be simulated... ,

— A

K
x € IF5

e Strongly with cost quadratic in )((lH)®")- _ /74

10) < u
p(x) = ||((x] ® DU|0)S™ ||

Compute p(x) forall x € IF’Z‘

\

* -Strongly with cost linear in )((|H)®").
Find a probability vector p such that (1 — e€)p(x) < p(x) < (1 4+ e)p(x)

* Weakly with cost linear in )(5(|H)®").

Sample elements of x € IF’Z‘ from a probability distribution p such that
Ip —plly <€
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| [GK98]: Clifford circuits can
Proof idea e efficiently simulated.

10)

Let 7 = x(|H)®™) and [H)®™ = ¥T_, ;| ;).

W) = U(]0) ® [H)®™) = ¥, Cilﬁ(l()) D 1$:i))]0) @ |HYS™ ¢
|

=00
By [GK98], can simulate measurements on each efficiently. .
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Known bounds on stabilizer rank

x(1H)®™)

e [Huang-Newman-Szegedy 20]: )((IH)®") super-polynomial unless P=NP.
* [Bravyi-Smith-Smolin 16]: x(|H)®") = Q(/n).

* [Peleg-Shpilka-Volk 21]: x(|H)®") = Q(n).

* [Qassim-Pashayan-Gosset 21]: )(( H)®) < 29" where a = ilogz (3).

X5(|H>®n) This talk: Alternate proofs up to log factor

* [Peleg-Shpilka-Volk 21]: \

There exists § > 0 such that )(5(|H)®”) > 0(yn/logn)
* [Bravyi-Gosset 16]: Xs (IH)®") <0 (% 2“’"), where a =~ 0.228.




Rest of talk

== Lower bounds — — Match [Peleg, Shpilka, Volk 22] up to log factor
. )((lH)®") > Q(n/logn).
» There exists § > 0 such that y5 (|H)®") > Q(yn/logn).

Upper bounds

* Generic stabilizer rank

Image: https://fishingbooker.com/blog/california-state-fish-golden-trout-garibaldi/



Fact: If |@) € (C?)®™ is a stabilizer state,
then the coordinates of |¢) are
{0, +1, i} (up to normalization).




Theorem [Dehaene, De Moor 03]:

|p) € (C*)®" is a stabilizer state & |p) = Y.,.c4 (1) (—1)a®) | x),

where A € F% is an affine linear subspace
[: I}, — F, is alinear function

q: F} — [F, is a quadratic polynomial



Subset-sum representations

* Let @ € C*, B € C". We say 3 is a subset-sum representation of « if each a;
is equal to the sum of some subset of {f34, ..., 5}

* Example: 8 = (1,2) is a subset-sum representation of &« = (1,2,3).

« Example: If [) = XY.i_ ¢c;| ;) is a stabilizer decomposition, then

= 4
g =(c,..,Cr,—Cq, ., —Cp,iCq, ..., iCpr, —ICq, ..., —iC,.) € C*T
is a subset-sum representation of |).
|@;) stabilizer =coordinates are in {0, 1, i}



Lower bounds on the size of a subset-sum rep

 Let @ € C¥, B € C". We say f3 is a subset-sum representation of « if each a;
is equal to the sum of some subset of {f4, ..., 5}

* Trivially, r = log, k, since {4, ..., B;-} has just 2" different subsets.
P exponentially increasing
* Theorem [Moulton 01]: If 2‘0(]-‘ < ‘a]-ﬂ‘ forallj € {1,...,k — 1}, then
r = k/log,k.

™ Linearin k, instead of logarithmic!

» Example: If @ = (21,272, ...,2%), thenr > k/log, k
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 Let @ € C¥, B € C". We say f3 is a subset-sum representation of « if each a;
is equal to the sum of some subset of {f4, ..., 5}

* Trivially, r = log, k, since {4, ..., B;-} has just 2" different subsets.
P exponentially increasing
* Theorem [Moulton 01]: If 2‘0(]-‘ < ‘a]-ﬂ‘ forallj € {1,...,k — 1}, then
r = k/log,k.

™ Linearin k, instead of logarithmic!

» Example: If @ = (21,272, ...,2%), thenr > k/log, k

* Theorem [Lovitz-Steffan]: If the coordinates of |Y) contain an exponentially
increasing sequence of length k, then y(|Y)) = k/(4log, k).




Lower bound on stabilizer rank

Corollary [Lovitz-Steffan]: ¥ (|H)Y®™) = n/(4 log, n).

Proof: Since |H) =~ |0) + 2.41|1),
IHY®™ % |0+ 0) + (2.41)(|0 - 01) + -+ [10 -+ 0)) + - + (2.41D)?|1 -+ 1).

= |H)®™ contains the exponentially increasing sequence (2.41,2.412, ..., 2.41™)

= y(|H)®™) = n/(4log,n) by boxed theorem.




Lower bound on approximate stabilizer rank

* The d-approximate stabilizer rank of a normalized state |Y) is

Xs([¥)) = min{x(|u)): llY) — )l < 63

e Theorem [Lovitz-Steffan]: There exists 6 > 0 for which

xs(IH)®™) = yn/(4log, V).

Proof sketch: Show that for 6 small enough, any state that is 6-close to
|H)Y®™ must contain an exponentially increasing sequence of length vn
(Use De Moivre-Laplace).

Result follows from boxed theorem. .




Super-linear lower bound on )((\H)@’")?

[BSS16] idea: 10) 4
The T-count of a state |i) is the minimum number n of : 1)
T gates needed to prepare |) with a Cliff+T circuit U -
) Cliff+ n T
Fact: If |Y) has T-count n, then y(|Y)) < )((IH)®"). -
Proof:
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Super-linear lower bound on )((\H)‘X’")?
[BSS16] idea: 10) 4

The T-count of a state |) is the minimum number n of
T gates needed to prepare |i) with a Cliff+T circuit U

Fact: If |Y) has T-count n, then y(|Y)) < )((IH)®”).
Proof:
Let v = y(|H)®™) and |[H)®™ = ¥i_, ¢;|$;).

. i 0) ® |H)®" <
) = T(10) ® [H)®™) = ¥7_, ¢;T(10) ® |$:)),
|

~sox(ly)) <. Stabilizer state! .




Super-linear lower bound on )((\H)@’")?

Fact: If |¢) has T-count n, then y(|y)) < )((IH)®").

[BSS16] idea: For each n, if there exists a state |,,) that:

1. Has T-count n
2. Satisfies y(Jy,,)) = n'*€

.. then X(|H>®n) ? X(¥n)) 22 nite <+ Super-linear



Super-linear lower bound on )(( H)®")?

Fact: If |Y) has T-count n, then y(|Y)) < )(( H)®").

[BSS16] idea: For each n, if there exists a state |y,,) that:

1. Has T-count n

2. Every subset-sum rep of [1,,) has size at least n1*€

1
.. then X(|H>®n) ? x(¥n)) 22 Zn1+e“ Super-linear

[Beverland-Campbell-Howard-Kliuchnikov 2020]: A state of T-count n can have an
exponentially increasing sequence of length at most O(n).




Rest of talk

Lower bounds — — Match [Peleg, Shpilka, Volk 22] up to log factor
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== Upper bounds
e Generic stabilizer rank
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Upper bounds: Generic stabilizer rank

e let y,, = max{)((h/))®"): |Y) € C?} be the n-th generic stabilizer rank.
* xn = x(|H)®™)
* Fact: )((It/))®") = x,, for all but finitely many [) € C? (up to scale).

* Proposition [Lovitz-Steffan]: y,, = 0(2"/2)
(Slight improvement of recent bound O ((n + 1)2"/2) of [Qassim-Pashayan-Gosset 21])

* Proposition [Lovitz-Steffan]: There exists a single set of y,, stabilizer states
that can be superimposed to produce any state of the form [1)®™.




summary

Classical simulation of Clifford+T circuits via stabilizer rank

Lower bounds — Match [Peleg, Shpilka, Volk 22] up to log factor

&4~
. )((lH)®”) > Q(n/logn). /
* There exists § > 0 such that ys (IH)®") > 0(/n/logn).

Upper bounds

 Generic stabilizer rank
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