Introduction to the Geometry of Tensors Part 1:

The fundamental theorem of linear algebra is a pathology + introduction to symmetry

J.M. Landsberg

Texas A\&M University and Univ. Toulouse (chaire d'excellence)
Supported by NSF grants CCF-1814254 and AF-2203618

Overview

1. Linear algebra review
2. Tensors
3. First open questions
4. The fundamental theorem of linear algebra is a pathology
5. Why algebraic geometry (polynomials)?
6. Why representation theory (exploitation of symmetry)?
7. Asymptotic geometry of tensors (quantum information theory and complexity of matrix multiplication)

Notation

$A=\mathbb{C}^{\mathbf{a}}$: column vectors,
$A^{*}:$ row vectors $=$ space of linear maps $A \rightarrow \mathbb{C}$, where $\alpha \in A^{*}$, $v \in A, \alpha(v)=\alpha v$, row-column mult.
$\operatorname{End}(A)=\{$ linear maps $A \rightarrow A\} \cong A^{*} \otimes A$
$G L(A)$ group of invertible linear maps $A \rightarrow A$
$=\{g \in \operatorname{End}(A) \mid \operatorname{det}(g) \neq 0\}$.
Similarly $B=\mathbb{C}^{\mathbf{b}}, C=\mathbb{C}^{\mathbf{c}}$.

Bilinear forms on $A^{*} \times B^{*}$

$M \in A \otimes B$ bilinear form i.e., $M: A^{*} \times B^{*} \rightarrow \mathbb{C}$. if choose bases $\mathbf{a} \times \mathbf{b}$ matrix

May also view as $M_{A}: A^{*} \rightarrow B$
$M_{B}: B^{*} \rightarrow A$
$G L(A) \times G L(B) \cdot M$ orbit of M.
$\overline{G L(A) \times G L(B) \cdot M}$ orbit closure of M.
Quiz: let M be "random", what is $\overline{G L(A) \times G L(B) \cdot M}$?
Normal forms: $\left(\begin{array}{cc}\mathrm{Id}_{r} & 0 \\ 0 & 0\end{array}\right), 1 \leq r \leq \mathbf{a}$.
A bilinear form M is determined up to isomorphism by its rank. In particular, rank one if $\exists a \in A, b \in B, M=a \otimes b$, i.e. column vect. \times row vect.

Group actions

Bilinear forms: $G L(A) \times G L(B)$ acts on $A \otimes B$, finite number of orbits, simple normal form for each.

Use: efficient algorithm to solve system of linear equations (ancient China, rediscovered by Gauss) Exploit (part of) group action to put system in easy form.

Endomorphisms $A \rightarrow A$ v. Bilinear forms $A \times A \rightarrow \mathbb{C}$

$A^{*} \otimes A^{*}$: bilinear forms $A \times A \rightarrow \mathbb{C}$.
$G L(A)$ acts on $\operatorname{End}(A)=A^{*} \otimes A . g \in G L(A), M \in A^{*} \otimes A$, $g \cdot M=g M g^{-1}$. Jordan normal form: infinite number of orbits (open subset described by a parameters) "tame" orbit structure.
Bilinear forms: $G L(A)$ acts on $A^{*} \otimes A^{*} g \in G L(A), M \in A^{*} \otimes A^{*}$, $g \cdot M=g M g^{t}$. Normal form? In general, no but see Conner-Gesmundo-L-Ventura

Fundamental Theorem of linear algebra

Fix bases $\left\{a_{i}\right\},\left\{b_{j}\right\}$ of A, B and for $r \leq \min \{\mathbf{a}, \mathbf{b}\}$, set $I_{r}=\sum_{k=1}^{r} a_{k} \otimes b_{k}$.
The following quantities all equal the rank of $T \in A \otimes B$:
(\mathbf{Q}) The largest r such that $I_{r} \in \operatorname{End}(A) \times \operatorname{End}(B) \cdot T$.
(Q) The largest r such that $I_{r} \in \overline{G L(A) \times G L(B) \cdot T}$.
$\left(\mathbf{m l}_{A}\right) \operatorname{dim} A-\operatorname{dim} \operatorname{ker}\left(T_{A}: A^{*} \rightarrow B\right)$
$\left(\mathrm{ml}_{B}\right) \operatorname{dim} B-\operatorname{dim} \operatorname{ker}\left(T_{B}: B^{*} \rightarrow A\right)$
$(\underline{\mathbf{R}})$ The smallest r such that T is a limit of a sum of r rank one elements, i.e., such that $T \in \overline{G L(A) \times G L(B) \cdot I_{r}}$
(R) The smallest r such that T is a sum of r rank one elements. i.e., such that $T \in \operatorname{End}(A) \times \operatorname{End}(B) \cdot I_{r}$

Tensors

Now consider trilinear form $A^{*} \times B^{*} \times C^{*} \rightarrow \mathbb{C}$.
if choose bases $\mathbf{a} \times \mathbf{b} \times \mathbf{c}$ array
$T \in A \otimes B \otimes C$. (or $T \in A_{1} \otimes \cdots \otimes A_{k}$)

Bilinear map $A^{*} \times B^{*} \rightarrow C$.

Linear map $T_{A}: A^{*} \rightarrow B \otimes C$
Example: $A^{*}, B^{*}, C=\mathcal{A}$ algebra, $T=T_{\mathcal{A}}$ structure tensor. i.e., $T_{\mathcal{A}}\left(a_{1}, a_{2}\right):=a_{1} a_{2}$.

In particular, A, B, C space of $n \times n$ matrices $T=M_{\langle n\rangle}$ structure tensor of matrix multiplication.
$T \in A \otimes B \otimes C$ has rank one if $\exists a \in A, b \in B, c \in C$ such that $T=\boldsymbol{a} \otimes \boldsymbol{b} \otimes \boldsymbol{c}$.

Tensors

Can consider
$G L(A) \times G L(B) \times G L(C) \cdot T$ orbit of T.
$\overline{G L}(A) \times G L(B) \times G L(C) \cdot T$ orbit closure of T.
Let T be "random", what is $\overline{G L(A) \times G L(B) \times G L(C) \cdot T}$?
too difficult, instead:
What is $\operatorname{dim}(G L(A) \times G L(B) \times G L(C) \cdot T)$?
Trick question Answer $\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{c}^{2}-2$.
Note ambient space dimension abc
Choose inclusions $A \subset \mathbb{C}^{s}, B \subset \mathbb{C}^{s}, C \subset \mathbb{C}^{s}$, (think of s as large)
$\sim A \otimes B \otimes C \subset \mathbb{C}^{s} \otimes \mathbb{C}^{s} \otimes \mathbb{C}^{s}$.
\mathbb{C}^{s} bases $\left\{e_{\ell}\right\},\left\{f_{\ell}\right\},\left\{g_{\ell}\right\}$
Write $I_{r}=\sum_{\ell=1}^{r} e_{\ell} \otimes f_{\ell} \otimes g_{\ell}, 1 \leq r \leq s$.

Tensors

Definitions:
$\mathbf{Q}(T)$ subrank: largest r such that $I_{r} \in \operatorname{End}(A) \times \operatorname{End}(B) \times \operatorname{End}(C) \cdot T$
$\underline{\mathbf{Q}}(T)$ border subrank: largest r such that

$$
I_{r} \in \overline{G L(A) \times G L(B) \times G L(C) \cdot T}
$$

ml multi-linear ranks: $\left(\mathbf{m l}_{A}(T), \mathbf{m l}_{B}(T), \mathbf{m l}_{C}(T)\right):=\left(\operatorname{rank} T_{A}\right.$, rank T_{B}, rank $\left.T_{C}\right)$
$\underline{\mathbf{R}}(T)$ border rank: The smallest r such that T is a limit of rank r tensors i.e. such that $T \in \overline{G L(A) \times G L(B) \times G L(C) \cdot I_{r}}$
$\mathbf{R}(T)$ rank: smallest r such that T is a sum of r rank one tensors i.e., such that $T \in \operatorname{End}(A) \times \operatorname{End}(B) \times \operatorname{End}(C) \cdot I_{r}$.

Inequalities and first open problems

$$
\begin{gathered}
\mathbf{Q}(T) \leq \underline{\mathbf{Q}}(T) \leq \min \left\{\boldsymbol{m l}_{A}(T), \boldsymbol{\operatorname { l }} \mathbf{B}_{B}(T), \boldsymbol{m} \mathbf{l}_{C}(T)\right\} \\
\leq \max \left\{\boldsymbol{m l}_{A}(T), \boldsymbol{m l}_{B}(T), \boldsymbol{m} \mathbf{l}_{C}(T)\right\} \leq \underline{\mathbf{R}}(T) \leq \mathbf{R}(T)
\end{gathered}
$$

all may be strict, even when $\mathbf{a}=\mathbf{b}=\mathbf{c}$.
Note $\mathbf{m l}_{A}(T) \leq \min \{\mathbf{a}, \mathbf{b c}\}$ etc.
For simplicity, say $\mathbf{a}=\mathbf{b}=\mathbf{c}=m$,
2021 Open: What is $\mathbf{Q}(T)$ for a random tensor?
2022 Derksen-Makam-Zuiddam Theorem (see Zuiddam's lecture for answer!)

Open: What is $\underline{\mathbf{Q}}(T)$ for a random tensor?

Rank and border rank

T : random $\Rightarrow \underline{\mathbf{R}}(T)=\mathbf{R}(T) \simeq \frac{m^{2}}{3}$ and this is largest possible $\underline{\mathbf{R}}$.
(Lickteig 1985, symmetric case Terracini 1916, higher order symmetric mostly Terracini 1916, finished Alexander-Hirschowitz 1990's)

Unlike matrices, a random tensor will not have maximal rank!
Open: Largest possible $\mathbf{R}(T)$? (state of art, see Buczynski-Han-Mella-Teitler)

Open: rank of a random tensor in $A_{1} \otimes \cdots \otimes A_{k}$ (see Abo-Ottaviani-Peterson for state of art). Rems: have expected answer, known correct in many cases, will be equal to border rank of random tensor

If multilinear ranks maximal $=m$, call T concise $\Rightarrow \underline{\mathbf{R}}(T) \geq m$, say minimal border rank if $=m$.

Open: Classify concise tensors of minimal border rank. (state of art: March 2022 Jelisiejew-L-Pal $m \leq 5$)

Geometry of rank: pathology of fundamental theorem

Imagine curve represents the set of tensors of rank one sitting in the N^{3} dimensional space of tensors.

Geometry of rank

$\{$ tensors of rank two $\}=$
\{ points on a secant line to set of tensors of rank one\}

Geometry of border rank

The limit of secant lines is a tangent line!
Note: most points on just one secant line.
Most points: if on secant line, usually not on tangent line
Plane curve: both. Rank one matrices like curves in the plane

Pathology!

Theorem (Zak 1980's/Severi 1910's): Rank one matrices and rank one symmetric matrices essentially only smooth (in projective space) geometric objects with rank semi-continuity.

Polynomials and limits

Clear: P : poly, $P\left(T_{t}\right)=0$ for $t>0 \Rightarrow P\left(T_{0}\right)=0$.
\Rightarrow Cannot describe tensor rank via zero sets of polynomials.
Matrices: Matrix border rank given by polynomials.
Tensor border rank?
Tensors of border rank $\leq r$ Euclidean closed
$S \subset V$ set, define Zariski closure by first define ideal
$I_{S}:=\{$ polys $P \mid P(s)=0 \forall s \in S\}$.
$\bar{S}^{z a r}:=\left\{v \in V \mid P(v)=0 \forall P \in I_{S}\right\}$.
Theorem (Mumford 1960's): In our situation $\bar{S}=\bar{S}^{z a r}$ (whenever $\bar{S}^{z a r}$ is irreducible and S contains a Zariski-open subset of $\bar{S}^{z a r}$).
\Rightarrow can determine border rank with polynomials!

Border rank via Polynomials

Matrices: easy, just minors (efficient to compute thanks to Gaussian elimination)

Tensors??
Open
State of the art: border rank ≤ 4 (Friedland 2010)
Next time: some known equations and motivation.

Normal forms?

Bilinear forms: finite number of orbits
Endomorphisms: finite number of cases, each with finite number of parameters "tame"

Tensors?
Kronecker $\mathbb{C}^{2} \otimes \mathbb{C}^{\mathbf{a}} \otimes \mathbb{C}^{\mathbf{b}}$: yes! tame $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$: yes! tame

In general: NO "wild"

Tensor Rank Decomposition

Linear algebra: determine rank of matrix easy. finding a rank decomposition easy. $r>1$, never unique.

Tensors: determine rank of tensor hard. No general technique. (methods for T low rank and with nice combinatorial properties) But: often unique!

If can decompose, extremely useful for applications.
e.g. blind source separation (P. Comon)

Classical algebraic geometry

Consider rank at most r matrices:
$\sigma_{r}(\operatorname{Seg}(\mathbb{P} A \times \mathbb{P} B))=\{[T] \mid \underline{\mathbf{R}}(T) \leq r\}$
Invariant under changes of bases \Rightarrow its ideal
$I_{\sigma_{r}(\operatorname{Seg}(\mathbb{P} A \times \mathbb{P} B))} \subset \operatorname{Sym}\left(A^{*} \otimes B^{*}\right)$ invariant under changes of bases
Special case: rank one - saw matrix has rank one iff size two minors zero. Degree two polynomials.

Consider all homogeneous degree two polynomials on matrices:
$S^{2}\left(A^{*} \otimes B^{*}\right)=S^{2} A^{*} \otimes S^{2} B^{*} \oplus \Lambda^{2} A^{*} \otimes \Lambda^{2} B^{*}$
Size two minors ??
What about $S^{2}\left(A^{*} \otimes B^{*} \otimes C^{*}\right)$? More generally any subspace in $I_{\sigma_{r}(S e g(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C))}$?

Quantum information theory

- $T \in A \otimes B \otimes C, T^{\prime} \in A^{\prime} \otimes B^{\prime} \otimes C^{\prime}$, define Kronecker product $T \boxtimes T^{\prime} \in\left(A \otimes A^{\prime}\right) \otimes\left(B \otimes B^{\prime}\right) \otimes\left(C \otimes C^{\prime}\right)$, and Kronecker powers $T^{\boxtimes k} \in\left(A^{\otimes k}\right) \otimes\left(B^{\otimes k}\right) \otimes\left(C^{\otimes k}\right)$
- Say T degenerates to T^{\prime} if
$T^{\prime} \in \overline{G L(A) \times G L(B) \times G L(C) \cdot T}$. In this case $\underline{\mathbf{R}}\left(T^{\prime}\right) \leq \underline{\mathbf{R}}(T)$.

Cost v. Value in quantum information: Approximate Cost of $T \sim$ $\underline{\mathbf{R}}(T)$, Approximate Value $\sim \underline{\mathbf{Q}}(T)$,
True cost/value $\underset{\sim}{\mathbf{R}}(T):=\lim _{N \rightarrow \infty}\left(\underline{\mathbf{R}}\left(T^{\otimes N}\right)\right)^{\frac{1}{N}}$,
$\underline{\mathbf{Q}}(T):=\lim _{N \rightarrow \infty}\left(\underline{\mathbf{Q}}\left(T^{\otimes N}\right)\right)^{\frac{1}{N}}$
Find low cost high value tensors. Exchange rate on Quantum information market (see Christandl lecture)

Approaches to value

$\mathbf{Q}, \underline{\mathbf{Q}}$ not related to classically studied objects.
Chang (2022): unlike rank and border rank, tensors with maximal $\underline{\mathbf{Q}}$ are vastly more abundant than tensors with maximal \mathbf{Q} : more precisely the dimensions of these sets differ greatly.
Idea: define easier to compute quantities bounding $\underline{\mathbf{Q}}$
\leadsto slice rank (Tao, 2016) and Strength/product rank (for higher order tensors)

Approaches to value, cont'd

"If a polynomial/tensor is biased-in the sense that its output distribution deviates significantly from uniform-must it be the case that it is algebraically structured, in the sense that it is a function of a small number of lower-degree polynomials/tensors?"

Variant over finite fields inspired by random tensors: analytic rank (Gowers) "low (product) rank implies bias" Cohen-Moshkovitz (2021) : bias implies low (product) rank.
\leadsto geometric rank (Kopparty-Moshkovitz-Zuiddam, 2020) over all fields
\sim classical linear algebra and classical algebraic geometry:
spaces of matrices of bounded rank, linear $\mathbb{P}^{m-1}, \mathrm{~s} \subset \mathbb{P}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{m}\right)$ having non-transverse interections with $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P}^{m-1} \times \mathbb{P}^{m-1}\right)\right)$

L-Geng (2021): low geometric rank implies high tensor rank. Geng (2022): classification of geometric rank ≤ 3 and general results on geometry of tensors with low geometric rank.

Thank you for your attention

For more on tensors, their geometry and applications, resp. geometry and complexity, resp. asymptotic geometry, moment maps, (quantum) information theory... : :

