Introduction to the Geometry of Tensors Part 1:

The fundamental theorem of linear algebra is a pathology + introduction to symmetry

J.M. Landsberg

Texas A&M University and Univ. Toulouse (chaire d'excellence)

Supported by NSF grants CCF-1814254 and AF-2203618

Overview

- 1. Linear algebra review
- 2. Tensors
- 3. First open questions
- 4. The fundamental theorem of linear algebra is a pathology
- 5. Why algebraic geometry (polynomials)?
- 6. Why representation theory (exploitation of symmetry)?
- 7. Asymptotic geometry of tensors (quantum information theory and complexity of matrix multiplication)

Notation

 $A = \mathbb{C}^{\mathbf{a}}$: column vectors,

 A^* : row vectors = space of linear maps $A \to \mathbb{C}$, where $\alpha \in A^*$, $v \in A$, $\alpha(v) = \alpha v$, row-column mult.

 $\mathsf{End}(A) = \{ \text{linear maps } A \to A \} \cong A^* \otimes A$

GL(A) group of invertible linear maps $A \rightarrow A$ = { $g \in End(A) \mid det(g) \neq 0$ }.

Similarly $B = \mathbb{C}^{\mathbf{b}}$, $C = \mathbb{C}^{\mathbf{c}}$.

Bilinear forms on $A^* \times B^*$

 $M \in A \otimes B$ bilinear form i.e., $M : A^* \times B^* \to \mathbb{C}$. if choose bases $\mathbf{a} \times \mathbf{b}$ matrix

May also view as $M_A : A^* \to B$ $M_B: B^* \to A$ $GL(A) \times GL(B) \cdot M$ orbit of M. $GL(A) \times GL(B) \cdot M$ orbit closure of M. Quiz: let M be "random", what is $GL(A) \times GL(B) \cdot M$? Normal forms: $\begin{pmatrix} \mathsf{Id}_r & 0\\ 0 & 0 \end{pmatrix}$, $1 \le r \le \mathbf{a}$.

A bilinear form M is determined up to isomorphism by its rank. In particular, rank one if $\exists a \in A, b \in B, M = a \otimes b$, i.e. column vect. \times row vect. Bilinear forms: $GL(A) \times GL(B)$ acts on $A \otimes B$, finite number of orbits, simple normal form for each.

Use: efficient algorithm to solve system of linear equations (ancient China, rediscovered by Gauss) Exploit (part of) group action to put system in easy form.

Endomorphisms $A \to A$ v. Bilinear forms $A \times A \to \mathbb{C}$

 $A^* \otimes A^*$: bilinear forms $A \times A \to \mathbb{C}$.

GL(A) acts on $End(A) = A^* \otimes A$. $g \in GL(A)$, $M \in A^* \otimes A$, $g \cdot M = gMg^{-1}$. Jordan normal form: infinite number of orbits (open subset described by **a** parameters) "tame" orbit structure.

Bilinear forms: GL(A) acts on $A^* \otimes A^* g \in GL(A)$, $M \in A^* \otimes A^*$, $g \cdot M = gMg^t$. Normal form? In general, no but see Conner-Gesmundo-L-Ventura

Fundamental Theorem of linear algebra

Fix bases $\{a_i\}$, $\{b_j\}$ of A, B and for $r \le \min\{\mathbf{a}, \mathbf{b}\}$, set $I_r = \sum_{k=1}^r a_k \otimes b_k$.

The following quantities all equal the **rank** of $T \in A \otimes B$:

- (Q) The largest r such that $I_r \in \text{End}(A) \times \text{End}(B) \cdot T$.
- (Q) The largest r such that $I_r \in \overline{GL(A) \times GL(B) \cdot T}$.

$$(\mathbf{ml}_A) \operatorname{dim} A - \operatorname{dim} \operatorname{ker}(T_A : A^* \to B)$$

 $(\mathbf{ml}_B) \operatorname{dim} B - \operatorname{dim} \operatorname{ker}(T_B : B^* \to A)$

- (**R**) The smallest *r* such that *T* is a limit of a sum of *r* rank one elements, i.e., such that $T \in \overline{GL(A) \times GL(B) \cdot I_r}$
- (R) The smallest r such that T is a sum of r rank one elements. i.e., such that $T \in End(A) \times End(B) \cdot I_r$

Tensors

Now consider trilinear form $A^* \times B^* \times C^* \to \mathbb{C}$.

if choose bases $\mathbf{a} \times \mathbf{b} \times \mathbf{c}$ array

$$T \in A \otimes B \otimes C$$
. (or $T \in A_1 \otimes \cdots \otimes A_k$)

Bilinear map $A^* \times B^* \to C$.

Linear map $T_A: A^* \to B \otimes C$

Example: $A^*, B^*, C = A$ algebra, $T = T_A$ structure tensor. i.e., $T_A(a_1, a_2) := a_1 a_2$.

In particular, A, B, C space of $n \times n$ matrices $T = M_{\langle n \rangle}$ structure tensor of matrix multiplication.

 $T \in A \otimes B \otimes C$ has rank one if $\exists a \in A, b \in B, c \in C$ such that $T = a \otimes b \otimes c$.

Tensors

Can consider $GL(A) \times GL(B) \times GL(C) \cdot T$ orbit of T. $\overline{GL(A) \times GL(B) \times GL(C) \cdot T}$ orbit closure of T. Let T be "random", what is $\overline{GL(A) \times GL(B) \times GL(C) \cdot T}$? too difficult, instead: What is dim $(\overline{GL(A) \times GL(B) \times GL(C) \cdot T})$?

Trick question Answer $\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2 - 2$.

Note ambient space dimension abc

Choose inclusions $A \subset \mathbb{C}^{s}$, $B \subset \mathbb{C}^{s}$, $C \subset \mathbb{C}^{s}$, (think of s as large)

$$\rightsquigarrow A \otimes B \otimes C \subset \mathbb{C}^{s} \otimes \mathbb{C}^{s} \otimes \mathbb{C}^{s}.$$

 \mathbb{C}^s bases $\{e_\ell\}$, $\{f_\ell\}$, $\{g_\ell\}$

Write $I_r = \sum_{\ell=1}^r e_\ell \otimes f_\ell \otimes g_\ell$, $1 \le r \le s$.

Tensors

Definitions:

- $\mathbf{Q}(\mathcal{T})$ subrank: largest r such that $I_r \in \operatorname{End}(A) \times \operatorname{End}(B) \times \operatorname{End}(C) \cdot \mathcal{T}$
- $\underline{\mathbf{Q}}(\mathcal{T}) \quad border \ subrank: \ largest \ r \ such \ that \\ I_r \in \overline{GL(A) \times GL(B) \times GL(C) \cdot \mathcal{T}}$
 - **ml** multi-linear ranks: $(\mathbf{ml}_A(T), \mathbf{ml}_B(T), \mathbf{ml}_C(T)) := (\operatorname{rank} T_A, \operatorname{rank} T_B, \operatorname{rank} T_C)$
- $\underline{\mathbf{R}}(T) \text{ border rank: The smallest } r \text{ such that } T \text{ is a limit of rank } r \\ \text{tensors i.e. such that } T \in \overline{GL(A) \times GL(B) \times GL(C) \cdot I_r}$
- $\mathbf{R}(T)$ rank: smallest r such that T is a sum of r rank one tensors i.e., such that $T \in \operatorname{End}(A) \times \operatorname{End}(B) \times \operatorname{End}(C) \cdot I_r$.

Inequalities and first open problems

 $\mathbf{Q}(T) \leq \underline{\mathbf{Q}}(T) \leq \min\{\mathbf{ml}_{A}(T), \mathbf{ml}_{B}(T), \mathbf{ml}_{C}(T)\}$ $\leq \max\{\mathbf{ml}_{A}(T), \mathbf{ml}_{B}(T), \mathbf{ml}_{C}(T)\} \leq \underline{\mathbf{R}}(T) \leq \mathbf{R}(T)$ all may be strict, even when $\mathbf{a} = \mathbf{b} = \mathbf{c}$. Note $\mathbf{ml}_{A}(T) < \min\{\mathbf{a}, \mathbf{bc}\}$ etc.

For simplicity, say $\mathbf{a} = \mathbf{b} = \mathbf{c} = m$,

2021 Open: What is Q(T) for a random tensor?

2022 Derksen-Makam-Zuiddam Theorem (see Zuiddam's lecture for answer!)

Open: What is $\mathbf{Q}(T)$ for a random tensor?

Rank and border rank

T: random $\Rightarrow \underline{\mathbf{R}}(T) = \mathbf{R}(T) \simeq \frac{m^2}{3}$ and this is largest possible $\underline{\mathbf{R}}$. (Lickteig 1985, symmetric case Terracini 1916, higher order symmetric mostly Terracini 1916, finished Alexander-Hirschowitz 1990's)

Unlike matrices, a random tensor will not have maximal rank!

Open: Largest possible $\mathbf{R}(T)$? (state of art, see Buczynski-Han-Mella-Teitler)

Open: rank of a random tensor in $A_1 \otimes \cdots \otimes A_k$ (see Abo-Ottaviani-Peterson for state of art). Rems: have expected answer, known correct in many cases, will be equal to border rank of random tensor

If multilinear ranks maximal = m, call T concise $\Rightarrow \mathbf{R}(T) \ge m$, say minimal border rank if = m.

Open: Classify concise tensors of minimal border rank. (state of art: March 2022 Jelisiejew-L-Pal $m \le 5$)

Geometry of rank: pathology of fundamental theorem

Imagine curve represents the set of tensors of rank one sitting in the N^3 dimensional space of tensors.

Geometry of rank

{ tensors of rank two} =

{ points on a secant line to set of tensors of rank one}

The limit of secant lines is a tangent line!

Note: most points on just one secant line.

Most points: if on secant line, usually not on tangent line

Plane curve: both. Rank one matrices like curves in the plane

Pathology!

Theorem (Zak 1980's/Severi 1910's): Rank one matrices and rank one symmetric matrices essentially only smooth (in projective space) geometric objects with rank semi-continuity.

Polynomials and limits

Clear: P: poly, $P(T_t) = 0$ for $t > 0 \Rightarrow P(T_0) = 0$.

 \Rightarrow Cannot describe tensor rank via zero sets of polynomials.

Matrices: Matrix border rank given by polynomials.

Tensor border rank?

Tensors of border rank $\leq r$ Euclidean closed

 $S \subset V$ set, define Zariski closure by first define ideal $I_S := \{ \text{polys } P \mid P(s) = 0 \forall s \in S \}.$ $\overline{S}^{zar} := \{ v \in V \mid P(v) = 0 \forall P \in I_S \}.$

Theorem (Mumford 1960's): In our situation $\overline{S} = \overline{S}^{zar}$ (whenever \overline{S}^{zar} is irreducible and S contains a Zariski-open subset of \overline{S}^{zar}).

 \Rightarrow can determine border rank with polynomials!

Matrices: easy, just minors (efficient to compute thanks to Gaussian elimination)

Tensors??

Open

State of the art: border rank \leq 4 (Friedland 2010)

Next time: some known equations and motivation.

Normal forms?

Bilinear forms: finite number of orbits

Endomorphisms: finite number of cases, each with finite number of parameters "tame"

Tensors?

Kronecker $\mathbb{C}^2 \otimes \mathbb{C}^{\mathbf{a}} \otimes \mathbb{C}^{\mathbf{b}}$: yes! tame

 $\mathbb{C}^3{\mathord{ \otimes } } \mathbb{C}^3{\mathord{ \otimes } } \mathbb{C}^3{\mathord{ : } }$ yes! tame

In general: NO "wild"

Linear algebra: determine rank of matrix easy. finding a rank decomposition easy. r > 1, never unique.

Tensors: determine rank of tensor hard. No general technique. (methods for T low rank and with nice combinatorial properties) But: often unique!

If can decompose, extremely useful for applications.

e.g. blind source separation (P. Comon)

Classical algebraic geometry

Consider rank at most *r* matrices: $\sigma_r(Seg(\mathbb{P}A \times \mathbb{P}B)) = \{[T] \mid \underline{\mathbf{R}}(T) \leq r\}$

Invariant under changes of bases \Rightarrow its ideal $I_{\sigma_r(Seg(\mathbb{P}A \times \mathbb{P}B))} \subset Sym(A^* \otimes B^*)$ invariant under changes of bases Special case: rank one - saw matrix has rank one iff size two minors zero. Degree two polynomials.

Consider all homogeneous degree two polynomials on matrices:

$$S^2(A^* \otimes B^*) = S^2 A^* \otimes S^2 B^* \oplus \Lambda^2 A^* \otimes \Lambda^2 B^*$$

Size two minors ??

What about $S^2(A^* \otimes B^* \otimes C^*)$? More generally any subspace in $I_{\sigma_r(Seg(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C))}$?

Quantum information theory

► $T \in A \otimes B \otimes C$, $T' \in A' \otimes B' \otimes C'$, define *Kronecker product* $T \boxtimes T' \in (A \otimes A') \otimes (B \otimes B') \otimes (C \otimes C')$, and Kronecker powers $T^{\boxtimes k} \in (A^{\otimes k}) \otimes (B^{\otimes k}) \otimes (C^{\otimes k})$

Say
$$T$$
 degenerates to T' if
 $T' \in \overline{GL(A) \times GL(B) \times GL(C) \cdot T}$. In this case
 $\underline{\mathbf{R}}(T') \leq \underline{\mathbf{R}}(T)$.

Cost v. Value in quantum information: Approximate Cost of $T \sim \underline{\mathbf{R}}(T)$, Approximate Value $\sim \underline{\mathbf{Q}}(T)$,

True cost/value
$$\mathbf{\underline{R}}(T) := \lim_{N \to \infty} (\mathbf{\underline{R}}(T^{\otimes N}))^{\frac{1}{N}},$$

 $\mathbf{\underline{Q}}(T) := \lim_{N \to \infty} (\mathbf{\underline{Q}}(T^{\otimes N}))^{\frac{1}{N}}$

Find low cost high value tensors. Exchange rate on Quantum information market (see Christandl lecture)

 ${\bf Q},\,\, {\bf \underline{Q}}$ not related to classically studied objects.

Chang (2022): unlike rank and border rank, tensors with maximal $\underline{\mathbf{Q}}$ are vastly more abundant than tensors with maximal \mathbf{Q} : more precisely the dimensions of these sets differ greatly.

Idea: define easier to compute quantities bounding ${f Q}$

 \rightsquigarrow slice rank (Tao, 2016) and Strength/product rank (for higher order tensors)

Approaches to value, cont'd

"If a polynomial/tensor is biased—in the sense that its output distribution deviates significantly from uniform—must it be the case that it is algebraically structured, in the sense that it is a function of a small number of lower-degree polynomials/tensors?"

Variant over finite fields inspired by random tensors: analytic rank (Gowers) "low (product) rank implies bias" Cohen-Moshkovitz (2021) : bias implies low (product) rank.

 \rightsquigarrow geometric rank (Kopparty-Moshkovitz-Zuiddam, 2020) over all fields

 \rightsquigarrow classical linear algebra *and* classical algebraic geometry:

spaces of matrices of bounded rank, linear \mathbb{P}^{m-1} 's $\subset \mathbb{P}(\mathbb{C}^m \otimes \mathbb{C}^m)$ having non-transverse interections with $\sigma_r(Seg(\mathbb{P}^{m-1} \times \mathbb{P}^{m-1}))$

L-Geng (2021): low geometric rank implies high tensor rank. Geng (2022): classification of geometric rank \leq 3 and general results on geometry of tensors with low geometric rank.

Thank you for your attention

For more on tensors, their geometry and applications, resp. geometry and complexity, resp. asymptotic geometry, moment maps, (quantum) information theory... : :

