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Overview

1. Linear algebra review

2. Tensors

3. First open questions

4. The fundamental theorem of linear algebra is a pathology

5. Why algebraic geometry (polynomials)?

6. Why representation theory (exploitation of symmetry)?

7. Asymptotic geometry of tensors (quantum information theory
and complexity of matrix multiplication)
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Notation

A = Ca : column vectors,

A∗: row vectors = space of linear maps A→ C, where α ∈ A∗,
v ∈ A, α(v) = αv , row-column mult.

End(A) = {linear maps A→ A} ∼= A∗⊗A

GL(A) group of invertible linear maps A→ A
= {g ∈ End(A) | det(g) 6= 0}.

Similarly B = Cb, C = Cc.
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Bilinear forms on A∗ × B∗

M ∈ A⊗B bilinear form i.e., M : A∗ × B∗ → C. if choose bases
a× b matrix

May also view as MA : A∗ → B

MB : B∗ → A

GL(A)× GL(B) ·M orbit of M.

GL(A)× GL(B) ·M orbit closure of M.

Quiz: let M be “random”, what is GL(A)× GL(B) ·M?

Normal forms:

(
Idr 0
0 0

)
, 1 ≤ r ≤ a.

A bilinear form M is determined up to isomorphism by its rank.

In particular, rank one if ∃a ∈ A, b ∈ B, M = a⊗b, i.e. column
vect. × row vect.
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Group actions

Bilinear forms: GL(A)× GL(B) acts on A⊗B, finite number of
orbits, simple normal form for each.

Use: efficient algorithm to solve system of linear equations (ancient
China, rediscovered by Gauss) Exploit (part of) group action to
put system in easy form.
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Endomorphisms A→ A v. Bilinear forms A× A→ C

A∗⊗A∗: bilinear forms A× A→ C.

GL(A) acts on End(A) = A∗⊗A. g ∈ GL(A), M ∈ A∗⊗A,
g ·M = gMg−1. Jordan normal form: infinite number of orbits
(open subset described by a parameters) “tame” orbit structure.

Bilinear forms: GL(A) acts on A∗⊗A∗ g ∈ GL(A), M ∈ A∗⊗A∗,
g ·M = gMg t . Normal form? In general, no but see
Conner-Gesmundo-L-Ventura
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Fundamental Theorem of linear algebra

Fix bases {ai}, {bj} of A,B and for r ≤ min{a,b}, set
Ir =

∑r
k=1 ak⊗bk .

The following quantities all equal the rank of T ∈ A⊗B:

(Q) The largest r such that Ir ∈ End(A)× End(B) · T .

(Q) The largest r such that Ir ∈ GL(A)× GL(B) · T .

(mlA) dimA− dim ker(TA : A∗ → B)

(mlB) dimB − dim ker(TB : B∗ → A)

(R) The smallest r such that T is a limit of a sum of r rank one
elements, i.e., such that T ∈ GL(A)× GL(B) · Ir

(R) The smallest r such that T is a sum of r rank one elements.
i.e., such that T ∈ End(A)× End(B) · Ir
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Tensors

Now consider trilinear form A∗ × B∗ × C ∗ → C.

if choose bases a× b× c array

T ∈ A⊗B⊗C . (or T ∈ A1⊗ · · ·⊗ Ak)

Bilinear map A∗ × B∗ → C .

Linear map TA : A∗ → B⊗C

Example: A∗,B∗,C = A algebra, T = TA structure tensor. i.e.,
TA(a1, a2) := a1a2.

In particular, A,B,C space of n × n matrices T = M〈n〉 structure
tensor of matrix multiplication.

T ∈ A⊗B⊗C has rank one if ∃ a ∈ A, b ∈ B, c ∈ C such that
T = a⊗b⊗c .
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Tensors
Can consider

GL(A)× GL(B)× GL(C ) · T orbit of T .

GL(A)× GL(B)× GL(C ) · T orbit closure of T .

Let T be “random”, what is GL(A)× GL(B)× GL(C ) · T?

too difficult, instead:

What is dim(GL(A)× GL(B)× GL(C ) · T )?

Trick question Answer a2 + b2 + c2 − 2.

Note ambient space dimension abc

Choose inclusions A ⊂ Cs , B ⊂ Cs , C ⊂ Cs , (think of s as large)

; A⊗B⊗C ⊂ Cs⊗Cs⊗Cs .

Cs bases {e`}, {f`}, {g`}

Write Ir =
∑r

`=1 e`⊗f`⊗g`, 1 ≤ r ≤ s.
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Tensors

Definitions:

Q(T ) subrank: largest r such that
Ir ∈ End(A)× End(B)× End(C ) · T

Q(T ) border subrank: largest r such that

Ir ∈ GL(A)× GL(B)× GL(C ) · T

ml multi-linear ranks:
(mlA(T ),mlB(T ),mlC (T )) := (rankTA, rankTB , rankTC )

R(T ) border rank: The smallest r such that T is a limit of rank r
tensors i.e. such that T ∈ GL(A)× GL(B)× GL(C ) · Ir

R(T ) rank: smallest r such that T is a sum of r rank one tensors
i.e., such that T ∈ End(A)× End(B)× End(C ) · Ir .
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Inequalities and first open problems

Q(T ) ≤ Q(T ) ≤ min{mlA(T ),mlB(T ),mlC (T )}

≤ max{mlA(T ),mlB(T ),mlC (T )} ≤ R(T ) ≤ R(T )

all may be strict, even when a = b = c.

Note mlA(T ) ≤ min{a,bc} etc.

For simplicity, say a = b = c = m,

2021 Open: What is Q(T ) for a random tensor?

2022 Derksen-Makam-Zuiddam Theorem (see Zuiddam’s lecture
for answer!)

Open: What is Q(T ) for a random tensor?
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Rank and border rank
T : random ⇒ R(T ) = R(T ) ' m2

3 and this is largest possible R.
(Lickteig 1985, symmetric case Terracini 1916, higher order
symmetric mostly Terracini 1916, finished Alexander-Hirschowitz
1990’s)

Unlike matrices, a random tensor will not have maximal rank!

Open: Largest possible R(T )? (state of art, see
Buczynski-Han-Mella-Teitler)

Open: rank of a random tensor in A1⊗ · · ·⊗ Ak (see
Abo-Ottaviani-Peterson for state of art). Rems: have expected
answer, known correct in many cases, will be equal to border rank
of random tensor

If multilinear ranks maximal = m, call T concise ⇒ R(T ) ≥ m,
say minimal border rank if = m.

Open: Classify concise tensors of minimal border rank. (state of
art: March 2022 Jelisiejew-L-Pal m ≤ 5)
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Geometry of rank: pathology of fundamental theorem

Imagine curve represents the set of tensors of rank one sitting in
the N3 dimensional space of tensors.
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Geometry of rank

{ tensors of rank two} =

{ points on a secant line to set of tensors of rank one}

x

y

z=x+y
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Geometry of border rank

u

v

The limit of secant lines is a tangent line!

Note: most points on just one secant line.

Most points: if on secant line, usually not on tangent line

Plane curve: both. Rank one matrices like curves in the plane 15 / 25



Pathology!

Theorem (Zak 1980’s/Severi 1910’s): Rank one matrices and rank
one symmetric matrices essentially only smooth (in projective
space) geometric objects with rank semi-continuity.
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Polynomials and limits

Clear: P: poly, P(Tt) = 0 for t > 0 ⇒ P(T0) = 0.

⇒ Cannot describe tensor rank via zero sets of polynomials.

Matrices: Matrix border rank given by polynomials.

Tensor border rank?

Tensors of border rank ≤ r Euclidean closed

S ⊂ V set, define Zariski closure by first define ideal
IS := {polys P | P(s) = 0∀s ∈ S}.

S
zar

:= {v ∈ V | P(v) = 0∀P ∈ IS}.

Theorem (Mumford 1960’s): In our situation S = S
zar

(whenever
S
zar

is irreducible and S contains a Zariski-open subset of S
zar

).

⇒ can determine border rank with polynomials!
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Border rank via Polynomials

Matrices: easy, just minors (efficient to compute thanks to
Gaussian elimination)

Tensors??

Open

State of the art: border rank ≤ 4 (Friedland 2010)

Next time: some known equations and motivation.
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Normal forms?

Bilinear forms: finite number of orbits

Endomorphisms: finite number of cases, each with finite number of
parameters “tame”

Tensors?

Kronecker C2⊗Ca⊗Cb: yes! tame

C3⊗C3⊗C3: yes! tame

In general: NO “wild”
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Tensor Rank Decomposition

Linear algebra: determine rank of matrix easy. finding a rank
decomposition easy. r > 1, never unique.

Tensors: determine rank of tensor hard. No general technique.
(methods for T low rank and with nice combinatorial properties)
But: often unique!

If can decompose, extremely useful for applications.

e.g. blind source separation (P. Comon)
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Classical algebraic geometry

Consider rank at most r matrices:
σr (Seg(PA× PB)) = {[T ] | R(T ) ≤ r}

Invariant under changes of bases ⇒ its ideal
Iσr (Seg(PA×PB)) ⊂ Sym(A∗⊗B∗) invariant under changes of bases

Special case: rank one - saw matrix has rank one iff size two
minors zero. Degree two polynomials.

Consider all homogeneous degree two polynomials on matrices:

S2(A∗⊗B∗) = S2A∗⊗S2B∗ ⊕ Λ2A∗⊗Λ2B∗

Size two minors ??

What about S2(A∗⊗B∗⊗C ∗)? More generally any subspace in
Iσr (Seg(PA×PB×PC))?
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Quantum information theory

I T ∈ A⊗B⊗C , T ′ ∈ A′⊗B ′⊗C ′, define Kronecker product
T � T ′ ∈ (A⊗A′)⊗(B⊗B ′)⊗(C⊗C ′), and Kronecker powers
T�k ∈ (A⊗k)⊗(B⊗k)⊗(C⊗k)

I Say T degenerates to T ′ if
T ′ ∈ GL(A)× GL(B)× GL(C ) · T . In this case
R(T ′) ≤ R(T ).

Cost v. Value in quantum information: Approximate Cost of T ∼
R(T ), Approximate Value ∼ Q(T ),

True cost/value R
:

(T ) := limN→∞(R(T⊗N))
1
N ,

Q
:

(T ) := limN→∞(Q(T⊗N))
1
N

Find low cost high value tensors. Exchange rate on Quantum
information market (see Christandl lecture)
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Approaches to value

Q, Q not related to classically studied objects.

Chang (2022): unlike rank and border rank, tensors with maximal
Q are vastly more abundant than tensors with maximal Q: more
precisely the dimensions of these sets differ greatly.

Idea: define easier to compute quantities bounding Q

; slice rank (Tao, 2016) and Strength/product rank (for higher
order tensors)
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Approaches to value, cont’d
“If a polynomial/tensor is biased—in the sense that its output
distribution deviates significantly from uniform—must it be the
case that it is algebraically structured, in the sense that it is a
function of a small number of lower-degree polynomials/tensors?”

Variant over finite fields inspired by random tensors: analytic rank
(Gowers) “low (product) rank implies bias” Cohen-Moshkovitz
(2021) : bias implies low (product) rank.

; geometric rank (Kopparty-Moshkovitz-Zuiddam, 2020) over all
fields

; classical linear algebra and classical algebraic geometry:

spaces of matrices of bounded rank, linear Pm−1’s ⊂ P(Cm⊗Cm)
having non-transverse interections with σr (Seg(Pm−1 × Pm−1))

L-Geng (2021): low geometric rank implies high tensor rank. Geng
(2022): classification of geometric rank ≤ 3 and general results on
geometry of tensors with low geometric rank.
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Thank you for your attention

For more on tensors, their geometry and applications, resp.
geometry and complexity, resp. asymptotic geometry,
moment maps, (quantum) information theory... : :
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