Entanglement Entropy of Pure Quantum States in Fermionic Many-Body Systems

Mario Kieburg

collaborators:
Eugenio Bianchi, Lucas Hackl, Marcos Rigol \& Lev Vidmar

Random Tensors at CIRM (Marseille, France), 17th of March 2022

Entanglement Entropy

- System coupled to a thermal bath (equilibrium ensemble):

$$
\rho=\frac{e^{-\hat{H} / T}}{Z}=\sum_{i} \underbrace{\frac{e^{-E_{i} / T}}{Z}}_{p_{i}}\left|E_{i}\right\rangle\left\langle E_{i}\right|
$$

$$
S=-\sum_{i} p_{i} \ln p_{i}
$$

(Thermal entropy)

Entanglement Entropy

- System coupled to a thermal bath (equilibrium ensemble):

$$
\begin{aligned}
& \rho=\frac{e^{-\hat{H} / T}}{Z}=\sum_{i} \underbrace{\frac{e^{-E_{i} / T}}{Z}}_{p_{i}}\left|E_{i}\right\rangle\left\langle E_{i}\right| \\
& S=-\sum_{i} p_{i} \ln p_{i}
\end{aligned}
$$

(Thermal entropy)

- Subsystem A in larger system (non-equilibrium situation):

$$
\begin{aligned}
& \rho_{A}=\sum_{i} P_{i}\left|\psi_{i}^{A}\right\rangle\left\langle\psi_{i}^{A}\right|=\operatorname{Tr}_{B}|\psi\rangle\langle\psi| \\
& S_{A}=-\sum_{i} P_{i} \ln P_{i}=-\operatorname{Tr} \rho_{A} \ln \rho_{A}
\end{aligned}
$$

(Entanglement entropy)

Integrable vs Chaotic

- Integrable systems like regular quantum billiards have regular wave functions.
\Rightarrow Entanglement entropy cannot be maximal.
\Rightarrow Thermalisation cannot happen for integrable systems.

Integrable vs Chaotic

- Chaotic systems like chaotic quantum billiards have irregular wave functions.
\Rightarrow Entanglement entropy can be maximal.
\Rightarrow Thermalisation may happen for chaotic systems.

E.g., Porter-Thomas distribution for the distribution of eigenvector coefficients applies. Eigenvectors look like Haar distributed unit vectors!

Page's Idea (based on Lubkin 78', Pagels, Lloyd 88')

- Eigenvectors of chaotic quantum system $|\psi\rangle \in \mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ seem to be close to Haar distributed unit vectors.
- Let $\operatorname{dim} \mathcal{H}_{A}=d_{A}$ and $\operatorname{dim} \mathcal{H}_{B}=d_{B}$ implying $\operatorname{dim} \mathcal{H}=d=d_{A} d_{B}$.
- Choose a Haar distributed unit vector $|\psi\rangle \in S^{2 d-1}=\mathrm{U}(d) / \mathrm{U}(d-1)$.
- Page's idea (93'): Consider the quantum state $\rho=|\psi\rangle\langle\psi|$ and the reduced density

image from Wikipedia matrix of the subsystem A is $\rho_{A}=\operatorname{Tr}_{B} \rho$.

Page's Idea (based on Lubkin 78', Pagels, Lloyd 88')

- Eigenvectors of chaotic quantum system $|\psi\rangle \in \mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ seem to be close to Haar distributed unit vectors.
- Let $\operatorname{dim} \mathcal{H}_{A}=d_{A}$ and $\operatorname{dim} \mathcal{H}_{B}=d_{B}$ implying $\operatorname{dim} \mathcal{H}=d=d_{A} d_{B}$.
- Choose a Haar distributed unit vector $|\psi\rangle \in S^{2 d-1}=\mathrm{U}(d) / \mathrm{U}(d-1)$.
- Page's idea (93'): Consider the quantum

image from Wikipedia state $\rho=|\psi\rangle\langle\psi|$ and the reduced density matrix of the subsystem A is $\rho_{A}=\operatorname{Tr}_{B} \rho$.

Conjecture:

The average entanglement entropy $\left\langle S_{A}\right\rangle=\left\langle\operatorname{Tr} \rho_{A} \ln \rho_{A}\right\rangle$ is the generic one for an eigenstate of a complex quantum system when $d_{A}, d_{B} \rightarrow \infty$.

Pure States

- $|\psi\rangle \in S^{2 d-1} \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ can be expanded:

$$
|\psi\rangle=\sum_{a=1}^{d_{A}} \sum_{b=1}^{d_{B}} W_{a b}|a\rangle \otimes|b\rangle
$$

where $\{|a\rangle\} \subset \mathcal{H}_{A}$ and $\{|b\rangle\} \subset \mathcal{H}_{B}$ are orthonormal bases.

- Collect coefficients in terms of a matrix $W=\left\{W_{a b}\right\} \in \mathbb{C}^{d_{A} \times d_{B}}$.
- Normalisation: $\|\psi\|=1$ reads as follows

$$
1=\langle\psi \mid \psi\rangle=\operatorname{Tr} W^{\dagger} W .
$$

image from Wikipedia

- Reduced density matrix is given as

$$
\rho_{A}=\operatorname{Tr}_{B}|\psi\rangle\langle\psi|=W W^{\dagger} .
$$

Haar distributed Pure States

- Let $|\psi\rangle \in S^{2 d-1} \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ be Haar distributed (uniformly distributed):

$$
|\psi\rangle=\sum_{a=1}^{d_{A}} \sum_{b=1}^{d_{B}} W_{a b}|a\rangle \otimes|b\rangle .
$$

- Random Matrix Ensemble: W is distributed by

$$
P(W)=\frac{\delta\left(1-\operatorname{Tr} W W^{\dagger}\right)}{\int \delta\left(1-\operatorname{Tr} W W^{\dagger}\right) d[W]}
$$

image from Wikipedia

This is a fixed trace ensemble!
Idea: Tracing this ensemble back to the complex Wishart-Laguerre ensemble.

Historical Results

Average entanglement entropy:

$$
\left\langle S_{A}\right\rangle=\overbrace{\Psi\left(d_{A} d_{B}+1\right)}^{\text {normalisation }}-\Psi\left(d_{B}+1\right)-\frac{d_{A}-1}{2 d_{B}}=\ln \left(d_{A}\right)-\frac{d_{A}}{2 d_{B}}+o(1)
$$

Digamma function: $\Psi(x)=\partial \ln \Gamma(x)$
For a qubit system:

1. $d_{A}=2^{V_{A}}, d_{B}=2^{V_{B}}$
2. $V=V_{A}+V_{B} \rightarrow \infty$
3. $\lim _{V \rightarrow \infty} V_{A} / V=f \in(0,1 / 2]$

$$
\left\langle S_{A}\right\rangle \longrightarrow \ln (2) f V-2^{-(1-2 f) V-1}
$$

Page Curve:

Second term is only present when $1-2 f \propto 1 / V$.

Pure Fermionic Gaussian States

image from Wikipedia

What is a Fermionic Gaussian State?

Definition: A fermionic Gaussian state is

$$
\rho=\exp \left[-\gamma Q \gamma^{\dagger}\right], \text { with } Q=-Q^{T} \in i \mathbb{R}^{2 V \times 2 V}
$$

and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{2} v\right)$ are Majorana fermions meaning they build a Clifford algebra in the irreducible matrix representation in $\mathbb{C}^{2^{v} \times 2^{v}}$

$$
\gamma_{a} \gamma_{b}+\gamma_{b} \gamma_{a}=\delta_{a b} \mathbf{1}_{2^{v}}
$$

What is a Fermionic Gaussian State?

Definition: A fermionic Gaussian state is

$$
\rho=\exp \left[-\gamma Q \gamma^{\dagger}\right], \text { with } Q=-Q^{T} \in i \mathbb{R}^{2 V \times 2 V}
$$

and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{2} v\right)$ are Majorana fermions meaning they build a Clifford algebra in the irreducible matrix representation in $\mathbb{C}^{2^{v} \times 2^{v}}$

$$
\gamma_{a} \gamma_{b}+\gamma_{b} \gamma_{a}=\delta_{a b} \mathbf{1}_{2^{v}}
$$

Let $\lambda_{j} \geq 0$ be the singular values of Q and $\left\{\eta_{j}\right\} \subset \operatorname{span}\left\{\gamma_{a}\right\}$ the corresponding eigenbases of the Majorana fermions. Then,

$$
\rho=\prod_{j=1}^{V} \frac{\mathbf{1}_{2} v+2 i \tanh \left(\lambda_{j}\right) \eta_{2 j-1} \eta_{2 j}}{2}
$$

Correlation Matrix

- The correlation matrix (only antisymmetric part)

$$
J_{a b}=-J_{b a}=i \operatorname{Tr}\left[\rho\left(\gamma_{a} \gamma_{b}-\frac{1}{2} \mathbb{1}_{2^{v}}\right)\right]
$$

comprises all information of a Gaussian state.

Correlation Matrix

- The correlation matrix (only antisymmetric part)

$$
J_{a b}=-J_{b a}=i \operatorname{Tr}\left[\rho\left(\gamma_{a} \gamma_{b}-\frac{1}{2} \mathbf{1}_{2} v\right)\right]
$$

comprises all information of a Gaussian state.

- Relation to Q is $J=i \tanh (Q)$

Correlation Matrix

- The correlation matrix (only antisymmetric part)

$$
J_{a b}=-J_{b a}=i \operatorname{Tr}\left[\rho\left(\gamma_{a} \gamma_{b}-\frac{1}{2} \mathbf{1}_{2 v}\right)\right]
$$

comprises all information of a Gaussian state.

- Relation to Q is $J=i \tanh (Q)$
- The singular values of J are $x_{1}, \ldots, x_{V} \in[0,1]$ and the von Neumann entropy is

$$
\begin{gathered}
S=\operatorname{Tr}(\rho \ln \rho)=\sum_{j=1}^{V} s\left(x_{j}\right) \quad \text { with } \\
s(x)=\frac{1+x}{2} \ln \left(\frac{1+x}{2}\right)+\frac{1-x}{2} \ln \left(\frac{1-x}{2}\right)
\end{gathered}
$$

Correlation Matrix

- The correlation matrix (only antisymmetric part)

$$
J_{a b}=-J_{b a}=i \operatorname{Tr}\left[\rho\left(\gamma_{a} \gamma_{b}-\frac{1}{2} \mathbf{1}_{2 v}\right)\right]
$$

comprises all information of a Gaussian state.

- Relation to Q is $J=i \tanh (Q)$
- The singular values of J are $x_{1}, \ldots, x_{V} \in[0,1]$ and the von Neumann entropy is

$$
\begin{gathered}
S=\operatorname{Tr}(\rho \ln \rho)=\sum_{j=1}^{v} s\left(x_{j}\right) \quad \text { with } \\
s(x)=\frac{1+x}{2} \ln \left(\frac{1+x}{2}\right)+\frac{1-x}{2} \ln \left(\frac{1-x}{2}\right)
\end{gathered}
$$

Pure Fermionic Gaussian State $=$ all $x_{j}=1$

Generic Pure Fermionic Gaussian State

- Group action on pure fermionic Gaussian states is given by

$$
J \longrightarrow O J O^{T} \text { with } O \in \mathrm{O}(2 \mathrm{~V})
$$

- Due to $J^{2}=\mathbf{1}_{N}$ and $J=-J^{T}=J^{*}$ all correlation matrices can be written as follows

$$
J=O \overbrace{\left[\begin{array}{cc}
0 & \mathbf{1} v \\
-\mathbf{1}_{v} & 0
\end{array}\right]}^{=J_{0}} O^{T}
$$

- Subgroup satisfying $J_{0}=O J_{0} O^{T}$ is given by $O \in \mathrm{U}(V)$ in the real $2 V \times 2 V$ matrix representation.
\Rightarrow Manifold of all pure fermionic Gaussian state: $\mathrm{O}(2 \mathrm{~V}) / \mathrm{U}(\mathrm{V})$
- Choose a Haar distributed $O \in \mathrm{O}(2 \mathrm{~V})$ to create a uniformly distributed state.

Reduced Density Matrix

- System \boldsymbol{A} is given by Majorana fermions $\gamma_{1}, \ldots, \gamma_{2 V_{A}}$ and the reduced density matrix is still a Gaussian state, namely an embedded Random Matrix.
- Reduced correlation matrix J_{A} is an orthogonal rank V_{A} projection of J, namely (Bianchi, Hack (20'))

$$
J=\left[\begin{array}{cc}
J_{A} & * \\
* & *
\end{array}\right]
$$

Reduced Density Matrix

- System \boldsymbol{A} is given by Majorana fermions $\gamma_{1}, \ldots, \gamma_{2 V_{A}}$ and the reduced density matrix is still a Gaussian state, namely an embedded Random Matrix.
- Reduced correlation matrix J_{A} is an orthogonal rank V_{A} projection of J, namely (Bianchi, Hack (200))

$$
J=\left[\begin{array}{ll}
J_{A} & * \\
* & *
\end{array}\right]
$$

- The jpdf of the singular values of J_{A} for $f=V_{A} / V \in[0,1 / 2]$ İS (Bianchi, Hackl, Kieburg (21'))

$$
p\left(x_{1}, \ldots, x_{V_{A}}\right) \propto \prod_{a<b}\left(x_{b}^{2}-x_{a}^{2}\right)^{2} \prod_{j=1}^{V}\left(1-x_{j}^{2}\right)^{V-2 V_{A}}
$$

- There is still the subsystem-subsystem symmetry!

Reduced Density Matrix

- System \boldsymbol{A} is given by Majorana fermions $\gamma_{1}, \ldots, \gamma_{2 V_{A}}$ and the reduced density matrix is still a Gaussian state, namely an embedded Random Matrix.
- Reduced correlation matrix J_{A} is an orthogonal rank V_{A} projection of J, namely (Bianchi, Hackl (20'))

$$
J=\left[\begin{array}{ll}
J_{A} & * \\
* & *
\end{array}\right]
$$

- The jpdf of the singular values of J_{A} for $f=V_{A} / V \in[0,1 / 2]$ is (Bianchi, Hackl, Kieburg (21'))

$$
p\left(x_{1}, \ldots, x_{V_{A}}\right) \propto \prod_{a<b}\left(x_{b}^{2}-x_{a}^{2}\right)^{2} \prod_{j=1}^{V}\left(1-x_{j}^{2}\right)^{V-2 V_{A}}
$$

- There is still the subsystem-subsystem symmetry!

Can be solved with Jacobi polynomials!

Average Entanglement Entropy

$$
\left\langle S_{A}\right\rangle=\int d[x] p(x) \sum_{j=1}^{V}\left[\frac{1+x_{j}}{2} \ln \left(\frac{1+x_{j}}{2}\right)+\frac{1-x_{j}}{2} \ln \left(\frac{1-x_{j}}{2}\right)\right]
$$

$$
=
$$

$$
=
$$

$$
=
$$

Average Entanglement Entropy

$$
\begin{aligned}
\left\langle S_{A}\right\rangle & =\int d[x] p(x) \sum_{j=1}^{V}\left[\frac{1+x_{j}}{2} \ln \left(\frac{1+x_{j}}{2}\right)+\frac{1-x_{j}}{2} \ln \left(\frac{1-x_{j}}{2}\right)\right] \\
& =\lim _{\epsilon \rightarrow 1} \partial_{\epsilon} \int d[x] p(x) \sum_{j=1}^{V}\left[\left(\frac{1+x_{j}}{2}\right)^{\epsilon}+\left(\frac{1-x_{j}}{2}\right)^{\epsilon}\right] \\
& =
\end{aligned}
$$

$$
=
$$

Average Entanglement Entropy

$$
\begin{aligned}
\left\langle S_{A}\right\rangle= & \int d[x] p(x) \sum_{j=1}^{V}\left[\frac{1+x_{j}}{2} \ln \left(\frac{1+x_{j}}{2}\right)+\frac{1-x_{j}}{2} \ln \left(\frac{1-x_{j}}{2}\right)\right] \\
= & \lim _{\epsilon \rightarrow 1} \partial_{\epsilon} \int d[x] p(x) \sum_{j=1}^{V}\left[\left(\frac{1+x_{j}}{2}\right)^{\epsilon}+\left(\frac{1-x_{j}}{2}\right)^{\epsilon}\right] \\
= & \left(V-\frac{1}{2}\right) \Psi(2 V)+\left(\frac{1}{2}+V_{A}-V\right) \Psi\left(2 V-2 V_{A}\right) \\
& +\left(\frac{1}{4}-V_{A}\right) \Psi(V)-\frac{1}{4} \Psi\left(V-V_{A}\right)-V_{A} \\
= &
\end{aligned}
$$

Average Entanglement Entropy

$$
\begin{aligned}
\left\langle S_{A}\right\rangle= & \int d[x] p(x) \sum_{j=1}^{V}\left[\frac{1+x_{j}}{2} \ln \left(\frac{1+x_{j}}{2}\right)+\frac{1-x_{j}}{2} \ln \left(\frac{1-x_{j}}{2}\right)\right] \\
= & \lim _{\epsilon \rightarrow 1} \partial_{\epsilon} \int d[x] p(x) \sum_{j=1}^{V}\left[\left(\frac{1+x_{j}}{2}\right)^{\epsilon}+\left(\frac{1-x_{j}}{2}\right)^{\epsilon}\right] \\
= & \left(V-\frac{1}{2}\right) \Psi(2 V)+\left(\frac{1}{2}+V_{A}-V\right) \Psi\left(2 V-2 V_{A}\right) \\
& +\left(\frac{1}{4}-V_{A}\right) \Psi(V)-\frac{1}{4} \Psi\left(V-V_{A}\right)-V_{A} \\
= & V[(\ln (2)-1) f+(f-1) \ln (1-f)]+\frac{f}{2}+\frac{\ln (1-f)}{4}+\mathcal{O}\left(V^{-1}\right)
\end{aligned}
$$

Contribution from the Page curve

Comparison

Reduced density matrices of Gaussian pure states are usually not maximally entangled!

Pure Gaussian Fermion States with Particle Preservation

- Go over to annihilation-creation operators

$$
f_{j}=\frac{1}{\sqrt{2}}\left(\gamma_{2 j-1}+i \gamma_{2 j}\right) \quad \text { and } \quad f_{j}^{\dagger}=\frac{1}{\sqrt{2}}\left(\gamma_{2 j-1}-i \gamma_{2 j}\right)
$$

Pure Gaussiann Fermion States with Particle Preservation

- Go over to annihilation-creation operators

$$
f_{j}=\frac{1}{\sqrt{2}}\left(\gamma_{2 j-1}+i \gamma_{2 j}\right) \quad \text { and } \quad f_{j}^{\dagger}=\frac{1}{\sqrt{2}}\left(\gamma_{2 j-1}-i \gamma_{2 j}\right)
$$

- Respective correlation matrix is

$$
\hat{J}=i\left[\begin{array}{cc}
\langle\psi| f_{a} f_{b}^{\dagger}-f_{b}^{\dagger} f_{a}|\psi\rangle & \langle\psi| f_{a}^{\dagger} f_{b}^{\dagger}-f_{b}^{\dagger} f_{a}^{\dagger}|\psi\rangle \\
\langle\psi| f_{a} f_{b}-f_{b} f_{a}|\psi\rangle & \langle\psi| f_{a}^{\dagger} f_{b}-f_{b} f_{a}^{\dagger}|\psi\rangle
\end{array}\right] \in \mathbb{C}^{2 V \times 2 V}
$$

Pure Gausșian Fermion Ștates with Particle Preservation

- Go over to annihilation-creation operators

$$
f_{j}=\frac{1}{\sqrt{2}}\left(\gamma_{2 j-1}+i \gamma_{2 j}\right) \quad \text { and } \quad f_{j}^{\dagger}=\frac{1}{\sqrt{2}}\left(\gamma_{2 j-1}-i \gamma_{2 j}\right)
$$

- Respective correlation matrix is

$$
\hat{J}=i\left[\begin{array}{cc}
\langle\psi| f_{a} f_{b}^{\dagger}-f_{b}^{\dagger} f_{a}|\psi\rangle & \langle\psi| f_{a}^{\dagger} f_{b}^{\dagger}-f_{b}^{\dagger} f_{a}^{\dagger}|\psi\rangle \\
\langle\psi| f_{a} f_{b}-f_{b} f_{a}|\psi\rangle & \langle\psi| f_{a}^{\dagger} f_{b}-f_{b} f_{a}^{\dagger}|\psi\rangle
\end{array}\right] \in \mathbb{C}^{2 V \times 2 v}
$$

- Number preserving pure state yields

$$
\hat{\jmath}=i\left[\begin{array}{cc}
\langle\psi| f_{a} f_{b}^{\dagger}-f_{b}^{\dagger} f_{a}|\psi\rangle & 0 \\
0 & \langle\psi| f_{a}^{\dagger} f_{b}-f_{b} f_{a}^{\dagger}|\psi\rangle
\end{array}\right]=i\left[\begin{array}{cc}
F & 0 \\
0 & -F^{T}
\end{array}\right]
$$

with $F \in \operatorname{Herm}(V) \cap U(V) \Rightarrow F^{2}=\mathbf{1}_{V}$

Pure Gausșian Fermion Ștates with Particle Preservation

- Go over to annihilation-creation operators

$$
f_{j}=\frac{1}{\sqrt{2}}\left(\gamma_{2 j-1}+i \gamma_{2 j}\right) \quad \text { and } \quad f_{j}^{\dagger}=\frac{1}{\sqrt{2}}\left(\gamma_{2 j-1}-i \gamma_{2 j}\right)
$$

- Respective correlation matrix is

$$
\hat{J}=i\left[\begin{array}{cc}
\langle\psi| f_{a} f_{b}^{\dagger}-f_{b}^{\dagger} f_{a}|\psi\rangle & \langle\psi| f_{a}^{\dagger} f_{b}^{\dagger}-f_{b}^{\dagger} f_{a}^{\dagger}|\psi\rangle \\
\langle\psi| f_{a} f_{b}-f_{b} f_{a}|\psi\rangle & \langle\psi| f_{a}^{\dagger} f_{b}-f_{b} f_{a}^{\dagger}|\psi\rangle
\end{array}\right] \in \mathbb{C}^{2 V \times 2 v}
$$

- Number preserving pure state yields

$$
\hat{\jmath}=i\left[\begin{array}{cc}
\langle\psi| f_{a} f_{b}^{\dagger}-f_{b}^{\dagger} f_{a}|\psi\rangle & 0 \\
0 & \langle\psi| f_{a}^{\dagger} f_{b}-f_{b} f_{a}^{\dagger}|\psi\rangle
\end{array}\right]=i\left[\begin{array}{cc}
F & 0 \\
0 & -F^{T}
\end{array}\right]
$$

with $F \in \operatorname{Herm}(V) \cap U(V) \Rightarrow F^{2}=\mathbf{1}_{V}$

- Relation to particle number: $\operatorname{Tr}(F)=2 N-V$

Reduced Number Preserving States

- Manifold of all pure Gaussian states with exactly N fermions is given by $\mathrm{U}(V) /[\mathrm{U}(N) \times \mathrm{U}(V-N)]$. Elements are given by

$$
F=U \operatorname{diag}\left(\mathbf{1}_{N},-\mathbb{1}_{V-N}\right) U^{\dagger}, \quad U \in \mathrm{U}(V)
$$

Reduced Number Preserving States

- Manifold of all pure Gaussian states with exactly N fermions is given by $\mathrm{U}(V) /[\mathrm{U}(N) \times \mathrm{U}(V-N)]$. Elements are given by

$$
F=U \operatorname{diag}\left(\mathbf{1}_{N},-\mathbf{1}_{V-N}\right) U^{\dagger}, \quad U \in \mathrm{U}(V)
$$

- Choose Haar a distributed $U \in U(V)$ to create a uniformly distributed ensemble on $\mathrm{U}(V) /[\mathrm{U}(N) \times \mathrm{U}(V-N)]$.

Reduced Number Preserving States

- Manifold of all pure Gaussian states with exactly N fermions is given by $\mathrm{U}(V) /[\mathrm{U}(N) \times \mathrm{U}(V-N)]$. Elements are given by

$$
F=U \operatorname{diag}\left(\mathbf{1}_{N},-\mathbf{1}_{V-N}\right) U^{\dagger}, \quad U \in \mathrm{U}(V)
$$

- Choose Haar a distributed $U \in U(V)$ to create a uniformly distributed ensemble on $\mathrm{U}(V) /[\mathrm{U}(N) \times \mathrm{U}(V-N)]$.
- Reduced correlation matrix is given by

$$
\hat{J}_{A}=i \operatorname{diag}\left(\Pi F \Pi^{T},-\Pi F^{T} \Pi^{T}\right)
$$

with Π is the orthogonal projection to first V_{A} rows.

Reduced Number Preserving States

- Manifold of all pure Gaussian states with exactly N fermions is given by $\mathrm{U}(V) /[\mathrm{U}(N) \times \mathrm{U}(V-N)]$. Elements are given by

$$
F=U \operatorname{diag}\left(\mathbf{1}_{N},-\mathbb{1}_{V-N}\right) U^{\dagger}, \quad U \in \mathrm{U}(V)
$$

- Choose Haar a distributed $U \in U(V)$ to create a uniformly distributed ensemble on $\mathrm{U}(V) /[\mathrm{U}(N) \times \mathrm{U}(V-N)]$.
- Reduced correlation matrix is given by

$$
\hat{\jmath}_{A}=i \operatorname{diag}\left(\Pi F \Pi^{T},-\Pi F^{T} \Pi^{T}\right)
$$

with Π is the orthogonal projection to first V_{A} rows.

- It is $\Pi F \Pi^{T}=2 U_{A} U_{A}^{\dagger}-\mathbf{1} V_{A}$ with $U_{A} \in \mathbb{C}^{V_{A} \times N}$ upper left block of $U \in U(V)$.

Reduced Number Preserving States

- Manifold of all pure Gaussian states with exactly N fermions is given by $\mathrm{U}(V) /[\mathrm{U}(N) \times \mathrm{U}(V-N)]$. Elements are given by

$$
F=U \operatorname{diag}\left(\mathbf{1}_{N},-\mathbf{1}_{V-N}\right) U^{\dagger}, \quad U \in U(V)
$$

- Choose Haar a distributed $U \in U(V)$ to create a uniformly distributed ensemble on $\mathrm{U}(V) /[\mathrm{U}(N) \times \mathrm{U}(V-N)]$.
- Reduced correlation matrix is given by

$$
\hat{J}_{A}=i \operatorname{diag}\left(\Pi F \Pi^{\top},-\Pi F^{\top} \Pi^{T}\right)
$$

with Π is the orthogonal projection to first V_{A} rows.

- It is $\Pi F \Pi^{T}=2 U_{A} U_{A}^{\dagger}-\mathbf{1} V_{A}$ with $U_{A} \in \mathbb{C}^{V_{A} \times N}$ upper left block of $U \in U(V)$.

This is the complex Jacobi ensemble!

Symmetries

1. Particle-hole symmetry: $N \leftrightarrow V-N$

graphic courtesy by Lucas Hackl

Symmetries

1. Particle-hole symmetry: $N \leftrightarrow V-N$
2. Subsystem-subsystem symmetry: $V_{A} \leftrightarrow V-V_{A}$

graphic courtesy by Lucas Hackl

Symmetries

1. Particle-hole symmetry: $N \leftrightarrow V-N$
2. Subsystem-subsystem symmetry: $V_{A} \leftrightarrow V-V_{A}$
3. Particle-subsystem symmetry: $V_{A} \leftrightarrow N$ $U_{A} U_{A}^{\dagger} \longleftrightarrow U_{A}^{\dagger} U_{A}$

graphic courtesy by Lucas Hackl

Symmetries

1. Particle-hole symmetry: $N \leftrightarrow V-N$
2. Subsystem-subsystem symmetry:

$$
V_{A} \leftrightarrow V-V_{A}
$$

3. Particle-subsystem symmetry: $V_{A} \leftrightarrow N$ $U_{A} U_{A}^{\dagger} \longleftrightarrow U_{A}^{\dagger} U_{A}$

graphic courtesy by Lucas Hackl
\Rightarrow It suffices to compute $\left\langle S_{A}\right\rangle$ for $V_{A} \leq N \leq V / 2$.

Results ($V_{A} \leq N \leq V / 2$)

$$
\begin{aligned}
\left\langle S_{A}\right\rangle= & 1-\frac{V_{A}}{V}(1+V)+V \Psi(V)-\frac{V_{A}}{V}[(V-N) \Psi(V-N)+N \Psi(N)] \\
& +\left(V_{A}-V\right) \Psi\left(V-V_{A}+1\right)
\end{aligned}
$$

$$
=
$$

Bianchi, Hackl, MK, Rigol, Vidmar (21')

Results ($V_{A} \leq N \leq V / 2$)

$$
\begin{aligned}
\left\langle S_{A}\right\rangle= & 1-\frac{V_{A}}{V}(1+V)+V \Psi(V)-\frac{V_{A}}{V}[(V-N) \Psi(V-N)+N \Psi(N)] \\
& +\left(V_{A}-V\right) \Psi\left(V-V_{A}+1\right) \\
= & V((f-1) \ln (1-f)+f[(n-1) \ln (1-n)-n \ln (n)-1]) \\
& +\frac{f[1-f+n(1-n)]}{12(1-f)(1-n) n} \frac{1}{V}+\mathcal{O}\left(V^{-2}\right)
\end{aligned}
$$

Results for fixed $N\left(V_{A} \leq N \leq V / 2\right)$

Page

Gauss

Bianchi, Hackl, MK, Rigol, Vidmar (21')

Conclusions

- Computation of the mean $\left\langle S_{A}\right\rangle$ (in this talk) and standard deviation ΔS_{A} for general pure states (Page setting) at variable (in this talk) and fixed number of fermions N and bosons up to order $\mathcal{O}(1)$.
- Computation of the mean $\left\langle S_{A}\right\rangle$ (in this talk) and standard deviation ΔS_{A} for fermionic Gaussian pure states (Page setting) at variable and fixed number of fermions N up to order $\mathcal{O}(1 / V)$.
- We have also computed the average over N with a binomial weight $\binom{V}{N} e^{-w N}$. (w is not the chemical potential though one can give it a similar interpretation.)
- Numerical simulations of spin-chains corroborate the universality of our results (even for the sub-leading orders!).

Open Questions

- Translation invariant systems show deviations from our results!
- Rigorous proofs for SYK- or many-body Hamiltonians that they follow our universal results! (Numerical evidence shows this!)
- What is the impact of the symmetry classes of the corresponding Hamiltonian? (already under investigation)
- What is with dynamical Hamiltonian (dynamical thermalisation)?

Many Thanks for your attention!

1. E. Bianchi, L. Hackl, MK (2021): arXiv:2103.05416
2. E. Bianchi, L. Hackl, MK, M. Rigol, L. Vidmar (2021): arXiv:2112.06959
