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Entanglement Entropy

» System coupled to a thermal bath (equilibrium ensemble):
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» System coupled to a thermal bath (equilibrium ensemble):
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» Subsystem Ain larger system (non-equilibrium situation):
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Integrable vs Chaotic

» Integrable systems like regular
quantum billiards have regular
wave functions.

= Entanglement entropy cannot
be maximal.

= Thermalisation cannot happen
for integrable systems.




Integrable vs Chaotic

» Chaotic systems like chaotic ‘I ! % k=1

quantum billiards have

irregular wave functions. k=2
= Entanglement entropy can be

maximal. k=4
= Thermalisation may happen

for chaotic systems. k=35

E.g., Porter-Thomas distribution for
the distribution of eigenvector coefficients applies.
Eigenvectors look like Haar distributed unit vectors!



Page’s Idea (based on Lubkin 78’, Pagels, Lloyd 88")

Eigenvectors of chaotic quantum system
|Y) € H =Ha® Hp seem to be close to
Haar distributed unit vectors.

Let dimH 4 = da and dimH g = dg implying
dimH = d = dadp.

Choose a Haar distributed unit vector
ly) € 8291 = U (d)/U(d —1).

Page’s idea (93°): Consider the quantum
state p = |[¢) (¢)| and the reduced density
matrix of the subsystem Ais pa = Trgp.

image from Wikipedia
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» Eigenvectors of chaotic quantum system
|Y) € H =Ha® Hp seem to be close to
Haar distributed unit vectors.

» Let dimH 4 = da and dimH g = dg implying
dimH = d = dadp.

» Choose a Haar distributed unit vector
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» Page’s idea (93’): Consider the quantum
state p = |[¢) (¢)| and the reduced density
matrix of the subsystem Ais pa = Trgp.
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Conjecture:
The average entanglement entropy (Sa) = (Trpalnpa) is the generic one
for an eigenstate of a complex quantum system when dy, dg — .



Pure States

> |) € S?91 € H 4 ® Hp can be expanded:

ds dg

) =Y Wala)@|b),

a=1b=1

where {|a)} C Haand {|b)} C Hp are
orthonormal bases.

» Collect coefficients in terms of a matrix
W = {Wpp} € Cxds,

» Normalisation: ||7)|| = 1 reads as follows
1= (W) = TrWTW.
» Reduced density matrix is given as

pa = Trg 1) (| = WWT.

image from Wikipedia



Haar distributed Pure States
> Let [¢p) € S29-1 € 4, ® Hp be Haar
distributed (uniformly distributed):

da dp

) =>"> Wala)@|b).

a=1b=1

» Random Matrix Ensemble: W is
distributed by

5(1 — TrWwr)

P(W) = .
( ) f 6( 1—Tr WWT ) d[ W] image from Wikipedia

This is a fixed trace ensemble!

Idea: Tracing this ensemble back to the complex
Wishart-Laguerre ensemble.



Historical Results

Average entanglement entropy:

normalisation

e N dy— 1
(Sa) =V(dadg+1) —V(dg+1) —

2dp

= In(dg) — 22+ o(1)

Digamma function: W(x) = dInl (x)

For a qubit system:

Vi2

1. dy=2", dg =2 Page Curve:

2. V=Va4+ Vg —> o0

Vidr

3. limy_ o VA/V =fe (0, 1/2]

Entanglement entropy S/In2

(Sp) —> In(2)fV — 2-(1-2HV-1

0 VI2

Subsystem volume V,
Second term is only present when 1—-2f o< 1/ V.
Page (93’), Foong, Kanno (94’); Sanchez-Rui (95’); Sen (96°)



Pure Fermionic Gaussian States
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What is a Fermionic Gaussian State?

Definition: A fermionic Gaussian state is

p = exp[—7Q+'], with Q = —Q' e jR2V*2Y

build a CVIifford algebra in the irreducible matrix representation
in C2"x2

and v = (71, ...,72v) are Majorana fermions meaning they

YaYb + VbYa = Oaplov.



What is a Fermionic Gaussian State?

Definition: A fermionic Gaussian state is
p = exp[—7Q+'], with Q = —Q' e jR2V*2Y

and v = (71, ...,72v) are Majorana fermions meaning they
build a CVIifford algebra in the irreducible matrix representation
in (C2V><2

YaYb + VbYa = Oaplov.

Let \; > 0 be the singular values of Q and {7} C span{~,} the
corresponding eigenbases of the Majorana fermions. Then,

"4 s
12v + 2/tanh()\-)7]2'_1 N2j
p | | /) 1e) /‘

. 2
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Correlation Matrix
» The correlation matrix (only antisymmetric part)

. 1
Jab = —Jpa =i Tr [P (’Ya’Yb - 212\/)}

comprises all information of a Gaussian state.

Peschel (03); Bianchi, Hackl (20)



Correlation Matrix
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comprises all information of a Gaussian state.
» Relationto Qis J =i tanh(Q)

Peschel (03); Bianchi, Hackl (20)



Correlation Matrix
» The correlation matrix (only antisymmetric part)

. 1
Jab = —Jpa =i Tr [P (’Ya’Yb - 212\/)}

comprises all information of a Gaussian state.
» Relationto Qis J =i tanh(Q)

» The singular values of J are x4,...,xy € [0, 1] and the von
Neumann entropy is

S=Tr(plnp) = > _s(x)  with

_

1+ x 14+ x 1—x 1—x
s(x) = 5 In 5 + In 5

Peschel (03); Bianchi, Hackl (20)
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Correlation Matrix
» The correlation matrix (only antisymmetric part)

. 1
Jab = —Jpa =i Tr [P (’Ya% - 212\/)}

comprises all information of a Gaussian state.
» Relationto Qis J =i tanh(Q)

» The singular values of J are x4,...,xy € [0, 1] and the von
Neumann entropy is

S=Tr(plnp) = > _s(x)  with

J=1

14+ x 14+ x 1—x 1—x
s(x) = Zln( 5 )—i— 5 ln< 5 )

Pure Fermionic Gaussian State = all x; = 1

Peschel (03); Bianchi, Hackl (20)




Generic Pure Fermionic Gaussian State

» Group action on pure fermionic Gaussian states is given by
J — 0JOT with O € O(2V)

» Dueto J? =1y and J = —J" = J* all correlation matrices
can be written as follows
=Jp

0 1
_ "4 T
ERE

> Subgroup satisfying Jo = OJyOT is given by O € U (V) in
the real 2V x 2V matrix representation.
= Manifold of all pure fermionic Gaussian state: O(2V)/U (V)

» Choose a Haar distributed O € O(2V) to create a uniformly
distributed state.

Bianchi, Hackl (20°)



Reduced Density Matrix

» System Ais given by Majorana fermions 1, ...,2y, and
the reduced density matrix is still a Gaussian state, namely
an embedded Random Matrix.

» Reduced correlation matrix Ja is an orthogonal rank V4
projection of J, namely @ianchi, Hacki (207)

2t

* *



Reduced Density Matrix

System A is given by Majorana fermions 1, ...,72y, and
the reduced density matrix is still a Gaussian state, namely
an embedded Random Matrix.

Reduced correlation matrix J, is an orthogonal rank V,
projection of J, namely @ianchi, Hacki (207)
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The jpdf of the singular values of Ja for f = V4/V € [0,1/2]

iS (Bianchi, Hackl, Kieburg (21°))

%
p(X1, ..., Xy,) H(Xg — x2)? H(1 _ ij)v_sz

a<b j=1

There is still the subsystem-subsystem symmetry!



Reduced Density Matrix

System A is given by Majorana fermions 4, ..., 72y, and
the reduced density matrix is still a Gaussian state, namely
an embedded Random Matrix.

Reduced correlation matrix J, is an orthogonal rank V,
projection of J, namely @ianchi, Hacki (207)

[

* *

The jpdf of the singular values of Ja for f = V4/V € [0,1/2]

iS (Bianchi, Hackl, Kieburg (21°))

%
p(X1, ..., Xy,) H(Xg — x2)? H(1 _ ij)v_sz

a<b j=1

There is still the subsystem-subsystem symmetry!

Can be solved with Jacobi polynomials!



Average Entanglement Entropy

o () )

Bianchi, Hackl, Kieburg (21’); leading order already found by Lydzba, Rigol, Vidmar (20’)



Average Entanglement Entropy

(Sa) /d[x]p ,ZV;[ Xll“(ix’)ﬂ;x’ln(ixfﬂ

~iim o, [ dixlp(x ji[( )+ ()

Bianchi, Hackl, Kieburg (21’); leading order already found by Lydzba, Rigol, Vidmar (20’)



Average Entanglement Entropy

o () )

= lim ae/d[X]P(X)é [(1 ZX1>+ <1 ;XJH

+ <1— VA> IIJ(V)—%W(V— Va) — Vs

Bianchi, Hackl, Kieburg (21’); leading order already found by Lydzba, Rigol, Vidmar (20’)



Average Entanglement Entropy

(Sa) /d[x]p ,ZV;[ Xll“(ix’)ﬂgxfln(ixfﬂ

~iim o, [ dixlp(x ji[( )+ ()

+ (1— VA> IIJ(V)—%W(V— Va) — Vs

f In(1-f)
s+ ——7—+

=V[(n(2) = 1)+ (f=1)In(1 — )] + 5 4 oV

Contribution from the Page curve

Bianchi, Hackl, Kieburg (21’); leading order already found by Lydzba, Rigol, Vidmar (20’)



Comparison
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04 04
= ~
Ec 0.31 203
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Reduced density matrices of Gaussian pure states
are usually not maximally entangled!



Pure Gaussian Fermion States
with Particle Preservation

» Go over to annihilation-creation operators

1 . 1 :
= 51 +ig)  and i = 7501~ he)

N



Pure Gaussian Fermion States
with Particle Preservation

» Go over to annihilation-creation operators

1 _ 1 .
fj = ﬁ(")@j_-] —+ I")/zj) and ij - 7(72]'—1 - IﬁY2j)

N

» Respective correlation matrix is

S| s =Bl @I - B810) | _ cevsey
(0 fafy — fofa|0) (9] Fhfy — Fofd [1)



Pure Gaussian Fermion States
with Particle Preservation

» Go over to annihilation-creation operators

1

1
fi= ——(voi_q + ivo; and = —(voiq — Vo
] \/5(72j 1 72]) i \/5(72j 1 72/)

» Respective correlation matrix is

g | @I = Bhale) @I - ) | _ ceveey
(W] fafy — fofaltb) (| fify — ol 1)
» Number preserving pure state yields
g | wifaf) = ) 0 :,[F Or]
0 (] £y — fof] ) 0 —F

with F € Herm (V) NU (V) = F2 =1y



Pure Gaussian Fermion States
with Particle Preservation

» Go over to annihilation-creation operators

1 1
L . P o s ' v
fi = \@(’)’2/—1 + iy2)) and fj = \/5(72]_1 i2))

» Respective correlation matrix is

g | @I = Bhale) @I - ) | _ ceveey
(W] fafy — fofa ) (0] fify — fof] [4)
» Number preserving pure state yields
3 W] faf) — 15 |10) 0 :.[F or]
0 (W] 13y — fof] ) 0 -F

with F € Herm (V) NU (V) = F2 =1y
» Relation to particle number: Tr(F) = 2N - V



Reduced Number Preserving States

» Manifold of all pure Gaussian states with exactly N fermions is given
by U (V)/[U(N) x U(V — N)]. Elements are given by

F = Udiag(‘ﬂN, -1 V,N)UT, Ue U(V)
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distributed ensemble on U (V)/[U(N) x U(V — N)].



Reduced Number Preserving States

» Manifold of all pure Gaussian states with exactly N fermions is given
by U (V)/[U(N) x U(V — N)]. Elements are given by

F = Udiag(‘ﬂN, -1 V,N)UT, Ue U(V)

» Choose Haar a distributed U € U (V) to create a uniformly
distributed ensemble on U (V)/[U(N) x U(V — N)].

» Reduced correlation matrix is given by
Ja = idiag(NFNT, —NFTNT)

with I is the orthogonal projection to first V4 rows.
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Reduced Number Preserving States

Manifold of all pure Gaussian states with exactly N fermions is given
by U (V)/[U(N) x U(V — N)]. Elements are given by

F = Udiag(1y, —1y_n)U!,  UeU(V)

Choose Haar a distributed U € U (V) to create a uniformly
distributed ensemble on U (V)/[U(N) x U(V — N)].

Reduced correlation matrix is given by
Ja = idiag(NFNT, —NFTNT)
with 1 is the orthogonal projection to first V4 rows.

ltis NFNT = 2UxU} — 1y, with Us € CY2<N upper left block of
Ueu(v).

This is the complex Jacobi ensemble!



Symmetries

1. Particle-hole symmetry: N < V — N

Peschel (03'); Hackl, Bianchi (20’)
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Symmetries

1. Particle-hole symmetry: N < V — N V1 ‘

2. Subsystem-subsystem symmetry:
VA — V- VA
N+ V-N

graphic courtesy by Lucas Hackl
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Symmetries

1. Particle-hole symmetry: N < V — N

2. Subsystem-subsystem symmetry:
VA V- VA

3. Particle-subsystem symmetry: V4 < N
UaU} «— UL Ua

Peschel (03); Hackl, Bianchi (20’)
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graphic courtesy by Lucas Hackl



Symmetries

1. Particle-hole symmetry: N & V- N vt o VoV Tae W
2. Subsystem-subsystem symmetry: !
Vaer V=V, Y Y
: N+ V-N
3. Particle-subsystem symmetry: V; <+ N |
UaU} «— UL Ua | Vio V- N
0 7 74

graphic courtesy by Lucas Hackl

= It suffices to compute (Sy) for V4 < N < V/2.

Peschel (03); Hackl, Bianchi (20’)



Results (V4 < N < V/2)

(Sa) =1 — ‘/‘}4(1 + V) + Vu(V) - VVA[(V — N)Y(V —N)+ NU(N)|

+(Va—V)WU(V—-Vy+1)

Bianchi, Hackl, MK, Rigol, Vidmar (21"



Results (V4 < N < V/2)

(Sa) =1 — ‘/‘}4(1 + V)+ Vy(V) - VVA[(V — N)Y(V —N) + NV(N)]

+(Va—V)WU(V—-Vy+1)
:V<(f— In(1 — f) + f[(n— 1)In(1 — n) — nin(n) — 1])

f[1 —f4+n(1—n)] 1
120 -1 —=n)n vV

+0O(V7?)

Bianchi, Hackl, MK, Rigol, Vidmar (21"



Results for fixed N (V4 < N < V/2)

Comparison with left figure

(Sa)n/(Vlog2)
(Sa)an/(Viog2)

0.1 02 0.3 0.4 0.5
f=Va/v

Bianchi, Hackl, MK, Rigol, Vidmar (21°)



Conclusions

Computation of the mean (S,) (in this talk) and standard
deviation ASy for general pure states (Page setting) at
variable (in this talk) and fixed number of fermions N and
bosons up to order O(1).

Computation of the mean (Sp) (in this talk) and standard
deviation A Sy for fermionic Gaussian pure states (Page
setting) at variable and fixed number of fermions N up to
order O(1/V).

We have also computed the average over N with a
binomial weight (,‘\/,) e "N_ (w is not the chemical potential
though one can give it a similar interpretation.)

Numerical simulations of spin-chains corroborate the
universality of our results (even for the sub-leading
orders!).



Open Questions

Translation invariant systems show deviations from our
results!

Rigorous proofs for SYK- or many-body Hamiltonians that
they follow our universal results! (Numerical evidence
shows this!)

What is the impact of the symmetry classes of the
corresponding Hamiltonian? (already under investigation)

What is with dynamical Hamiltonian (dynamical
thermalisation)?



Many Thanks
for your attention!

1. E. Bianchi, L. Hackl, MK (2021): arXiv:2103.05416

2. E. Bianchi, L. Hackl, MK, M. Rigol, L. Vidmar (2021):
arXiv:2112.06959



