

ALGEBRAIC-GEOMETRIC CHARACTERIZATION OF TRIPARTITE ENTANGLEMENT Masoud Gharahi and Stefano Mancini

School of Science and Technology, University of Camerino, 62032 Camerino, Italy INFN Sezione di Perugia, 06123 Perugia, Italy

ABSTRACT

To characterize entanglement of tripartite $\mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$ systems, we employ algebraic-geometric tools that are invariants under Stochastic Local Operation and Classical Communication (SLOCC), namely k-secant varieties and one-multilinear ranks (one-multiranks). Indeed, by means of them, we present a classification of tripartite pure states in terms of a finite number of families and subfamilies. At the core of it stands out a fine-structure grouping of three-qutrit entanglement.

THE FRAMEWORK OF ALGEBRAIC GEOMETRY

Secant & Tangent Varieties

The space of states $|\psi\rangle = \sum_{i \in \{0,...,d-1\}^3} \mathfrak{c}_i |i\rangle$ that are fully separable has the structure of a Segre variety which is embedded in the ambient space as follows

 $\Sigma^{3}_{\mathbf{d}-\mathbf{1}}: \mathbb{P}^{d-1} \times \mathbb{P}^{d-1} \times \mathbb{P}^{d-1} \hookrightarrow \mathbb{P}^{d^{3}-1}.$

• A k-secant of the Segre variety joins its k points, each of which represents a separable state. It corresponds to an entangled state being a superposition of k separable states.

One-Multiranks

Matricization: Reshaping 3-fold tensor product space $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$ ($\mathcal{H}_i \simeq \mathbb{C}^d$) to $\mathcal{H} \simeq \mathcal{H}_I \otimes \mathcal{H}_{\bar{I}}$, where $\mathcal{H}_I = \mathbb{C}^d$, $\mathcal{H}_{\bar{I}} = \mathbb{C}^{d^2}$, and I = (i) so that $I \cup \bar{I} = (1, 2, 3)$. Using Dirac notation, the flattening (matricization) of $|\psi\rangle \in \mathcal{H}$ reads

 $\mathcal{M}_{I}[\psi] = (\langle e_{0} | \psi \rangle, \dots, \langle e_{d-1} | \psi \rangle)^{\mathrm{T}}, \quad \text{Matrix Order} = d \times d^{2},$

where $|e_j\rangle = |j\rangle$ is the computational basis of \mathcal{H}_I and T denotes the matrix transposition.

k-secant variety $\sigma_k(\Sigma^3_{d-1}) \equiv$ union of k-secants of the Segre variety

k-secant varieties are SLOCC invariants.

The higher k-secant fill the ambient space $\mathbb{P}(\mathbb{C}^{d^{\otimes 3}})$ when $k = \lceil \frac{d^3}{3d-2} \rceil$, except for d = 3where the generic rank is 5.

The proper k-secant, i.e. the set $\sigma_k(\Sigma_{d-1}^3) \setminus \sigma_{k-1}(\Sigma_{d-1}^3)$, is the union of the k-secant hyperplanes $\mathcal{S}_k \subset \sigma_k(\Sigma_1^n)$ represented by

$$\mathcal{S}_k = \sum_{i=1}^k \lambda_i p_i, \quad \{\lambda_i\}_{i=1}^k \neq 0, \quad \{p_i\}_{i=1}^k \text{ are distinct points } \in \Sigma_{d-1}^3$$

• Tangents are limits of secants, e.g., when one point tends to another one.

Tensor Rank & Border Rank

- The rank of a tensor ψ is defined as the minimum number of simple tensors (fully separable states) that sum to ψ .
- The (tensor) border rank of a tensor ψ is defined as the smallest r such that ψ is a limit of tensors of rank r.

Example:
$$|W_3\rangle = |001\rangle + |010\rangle + |100\rangle = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left((|0\rangle + \varepsilon |1\rangle)^{\otimes 3} - |000\rangle \right).$$

Classification Algorithm

i) find families by identifying $\Sigma^3_{d-1}, \sigma_2(\Sigma^3_{d-1}), \ldots, \sigma_k(\Sigma^3_{d-1});$ ii) split families to secants and tangents by identifying $\tau_2(\Sigma_{d-1}^3), \ldots, \tau_k(\Sigma_{d-1}^3);$

iii) find subfamilies by identifying one-multiranks.

EXAMPLE: 3-QUTRIT ENTANGLEMENT

One-multiranks are SLOCC invariants.

- A state is genuinely entangled iff all one-multiranks are greater than one.
- One-multiranks of a given tensor in the k-secant are at most k.

Figure 1: Flattening of a 3-order tensor to three different matrices [https://doi.org/10.1016/j.isprsjprs.2013.06.001].

classes to the inner ones (from σ_k to τ_k also in an approximate way), thus generating the entanglement hierarchy. Note that states $|B_i^{(1)}\rangle$ appear with a double petal because to emphasize that they can be obtained starting from either $|W_3\rangle$ states or $|B_i^{(2)}\rangle$ states. In contrast, $|B_i^{(2)}\rangle$ states cannot be obtained from $|W_3\rangle$ states.

FINER CLASSIFICATION

Finer classification of three-qutrit entanglement: $|\mathbf{Y}_{3}\rangle = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{2}} ((|0\rangle + \frac{\varepsilon}{\sqrt{2}}|1\rangle + \varepsilon^{2}|2\rangle)^{\otimes 3} + (|0\rangle - \frac{\varepsilon}{\sqrt{2}}|1\rangle)^{\otimes 3} - 2|000\rangle)),$ $|\mathbf{X}_3\rangle = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} ((|0\rangle + \varepsilon |1\rangle)^{\otimes 3} + \varepsilon |111\rangle - |000\rangle).$ $\Rightarrow |\mathbf{Y}_3\rangle = \sum_i \mathcal{P}_i \{|\mathbf{002}\rangle + |\mathbf{011}\rangle\}$ $|(333)'_{3}\rangle$ $\langle \mathbf{X}_3 \rangle = |\mathbf{W}_3 \rangle + |\mathbf{111} \rangle$

Figure 3: Using tensor rank as the third SLOCC invariant, the subfamily $|(333)'_3\rangle$ of Table I can be split into two sub-subfamilies $|X_3\rangle$ and $|Y_3\rangle$ with tensor ranks equal to four and five, respectively.

CONCLUSION

• One can always use n-qudit classification as a partial

classification of (n + 1)-qudit systems.

• Operational meaning (tensor rank and border rank, can be seen as the generalized Schmidt rank and its counterpart).

• This kind of classification can be considered as a reference to study (asymptotic) SLOCC interconversions among different resources based on tensor (border) rank.

• Extension of this classification to mixed states ...

REFERENCES

[1] MG and S. Mancini, Phys. Rev. A **104**, 042402 (2021).

[2] MG, S. Mancini, and G. Ottaviani, Phys. Rev. Research 2, 043003 (2020).

[3] J. M. Landsberg, Tensors: Geometry and Applications (American Mathematical Society 2012).

[4] V. Strassen, Linear Algebra Appl. 52-53, 645 (1983).

[5] T. Lickteig, Linear Algebra Appl. 69, 95 (1985).

[6] G. Ottaviani, Nagoya Math. J. 193, 95

(2009).

