ABSTRACT

 fine-structure grouping of three-qutrit entanglement.

The Framework of Algebraic Geometry

Secant \& Tangent Varieties

The space of states $|\psi\rangle=\sum_{i \in\{0, \ldots, d-1\}^{3}} \mathfrak{c}_{i}|i\rangle$ that are fully separable has the structure of a Segre variety which is embedded in the ambient space as follows

$$
\Sigma_{\mathrm{d}-\mathbf{1}}^{3}: \mathbb{P}^{d-1} \times \mathbb{P}^{d-1} \times \mathbb{P}^{d-1} \hookrightarrow \mathbb{P}^{d^{3}-1} .
$$

- A k-secant of the Segre variety joins its k points, each of which represents a separable state. It corresponds to an entangled state being a superposition of k separable states. k-secant variety $\sigma_{k}\left(\Sigma_{\mathrm{d}-1}^{3}\right) \equiv$ union of k-secants of the Segre variety

$$
k \text {-secant varieties are SLOCC invariants. }
$$

The higher k-secant fill the ambient space $\mathbb{P}\left(\mathbb{C}^{d^{83}}\right)$ when $k=\left\lceil\frac{d^{3}}{3 d-2}\right\rceil$, except for $d=3$ where the generic rank is 5 .
The proper k-secant, i.e. the set $\sigma_{k}\left(\Sigma_{\mathrm{d}-1}^{3}\right) \backslash \sigma_{k-1}\left(\Sigma_{\mathrm{d}-1}^{3}\right)$, is the union of the k-secant hyperplanes $\mathcal{S}_{k} \subset \sigma_{k}\left(\Sigma_{1}^{n}\right)$ represented by

$$
\mathcal{S}_{k}=\sum_{i=1}^{k} \lambda_{i} p_{i}, \quad\left\{\lambda_{i}\right\}_{i=1}^{k} \neq 0, \quad\left\{p_{i}\right\}_{i=1}^{k} \text { are distinct points } \in \Sigma_{\mathrm{d}-1}^{3}
$$

- Tangents are limits of secants, e.g., when one point tends to another one.

Tensor Rank \& Border Rank

- The rank of a tensor ψ is defined as the minimum number of simple tensors (fully separable states) that sum to ψ
- The (tensor) border rank of a tensor ψ is defined as the smallest r such that ψ is a limit of tensors of rank r.

$$
\text { Example: } \quad\left|\mathrm{W}_{3}\right\rangle=|001\rangle+|010\rangle+|100\rangle=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left((|0\rangle+\varepsilon|1\rangle)^{\otimes 3}-|000\rangle\right)
$$

One-Multiranks

Matricization: Reshaping 3-fold tensor product space $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}\left(\mathcal{H}_{i} \simeq \mathbb{C}^{d}\right)$ to $\mathcal{H} \simeq \mathcal{H}_{I} \otimes \mathcal{H}_{\bar{I}}$, where $\mathcal{H}_{I}=\mathbb{C}^{d}, \mathcal{H}_{\bar{I}}=\mathbb{C}^{d^{2}}$, and $I=(i)$ so that $I \cup \bar{I}=(1,2,3)$, Using Dirac notation, the flattening (matricization) of $|\psi\rangle \in \mathcal{H}$ reads
$\mathcal{M}_{I}[\psi]=\left(\left\langle e_{0} \mid \psi\right\rangle, \ldots,\left\langle e_{d-1} \mid \psi\right\rangle\right)^{\mathrm{T}}, \quad$ Matrix Order $=d \times d^{2}$,
where $\left|e_{j}\right\rangle=|j\rangle$ is the computational basis of \mathcal{H}_{I} and T denotes the matrix transposition

One-multiranks are SLOCC invariants.

- A state is genuinely entangled iff all one-multiranks are greater than one
- One-multiranks of a given tensor in the k-secant are at most k.

Figure 1: Flattening of a 3-order tensor to three different matrices [https://doi.org/10.1016/j.isprsjprs.2013.06.001].

Classification Algorithm

i) find families by identifying $\Sigma_{\mathbf{d}-\mathbf{1}}^{3}, \sigma_{2}\left(\Sigma_{\mathbf{d}-\mathbf{1}}^{3}\right), \ldots, \sigma_{k}\left(\Sigma_{\mathbf{d}-\mathbf{1}}^{3}\right) ; \quad$ ii) split families to secants and tangents by identifying $\tau_{2}\left(\Sigma_{\mathbf{d}-\mathbf{1}}^{3}\right), \ldots, \tau_{k}\left(\Sigma_{\mathbf{d}-\mathbf{1}}^{3}\right)$; \quad iii) find subfamilies by identifying one-multiranks.

EXAMPLE: 3-QUTRIT ENTANGLEMENT

$\mathcal{F}: \mathcal{H}_{1} \otimes \mathcal{H}_{2}^{*} \rightarrow \Lambda^{2} \mathcal{H}_{1} \otimes \mathcal{H}_{3}$,							
$\mathcal{F}=$	$\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ -\mathfrak{c}_{0} & -\mathfrak{c}_{1} \\ -\mathfrak{c}_{3} & -\mathfrak{c}_{4} \\ -\mathfrak{c}_{6} & -\mathfrak{c}_{7} \\ \mathfrak{c}_{9} & \mathfrak{c}_{10} \\ \mathfrak{c}_{12} & \mathfrak{c}_{13} \\ \mathfrak{c}_{15} & \mathfrak{c}_{16}\end{array}$	0 0 0 $-\mathfrak{c}_{2}$ $-\mathfrak{c}_{5}$ $-\mathfrak{c}_{8}$ \mathfrak{c}_{11} \mathfrak{c}_{14} \mathfrak{c}_{17}	\mathfrak{c}_{0} \mathfrak{c}_{1} \mathfrak{c}_{3} \mathfrak{c}_{4} \mathfrak{c}_{6} \mathfrak{c}_{7} 0 0 0 0 0 0	\mathfrak{c}_{2} \mathfrak{c}_{5} \mathfrak{c}_{8} 0 0 0 0 $-\mathfrak{c}_{20}$ $-\mathfrak{c}_{23}$ $-\mathfrak{c}_{26}$	$-\mathfrak{c}_{9}$ $-\mathfrak{c}_{12}$ $-\mathfrak{c}_{15}$ \mathfrak{c}_{18} \mathfrak{c}_{21} \mathfrak{c}_{24} 0 0 0 0	$-\mathfrak{c}_{10}$ $-\mathfrak{c}_{13}$ $-\mathfrak{c}_{16}$ \mathfrak{c}_{19} \mathfrak{c}_{22} \mathfrak{c}_{25} 0 0 0	$\left.\begin{array}{c}-\mathfrak{c}_{11} \\ -\mathfrak{c}_{14} \\ -\mathfrak{c}_{17} \\ \mathfrak{c}_{12} \\ \mathfrak{c}_{23} \\ \mathfrak{c}_{26} \\ 0 \\ 0 \\ 0\end{array}\right)$
$\left\lceil\frac{\mathrm{rank} \mathcal{F}}{2}\right\rceil$ indicate the secant family of a given state.							
Table I. Fine-structure classification of 3 -qutrit entanglement							
Σ_{2}^{3}	σ_{2}	τ_{2}	σ_{3}	τ_{3}		σ_{4}	σ_{5}
\|Sep>	$\left\|\mathrm{GHZ}_{3}^{(1)}\right\rangle$	$\left\|W_{3}\right\rangle$	$\left\|\mathrm{GHZ}_{3}^{(2)}\right\rangle$	\|(333) ${ }^{\prime}$	\|(3)	(333) $\left.{ }_{4}\right\rangle$	$\left\|(333)_{5}\right\rangle$
	$\left\|\mathrm{B}_{i}^{(1)}\right\rangle_{i=1}^{3}$		\|(332) ${ }^{\text {d }}$	\|(332)' ${ }^{\text {/ }}$			
			\|(323) \rangle	$\left\|(323){ }^{\prime}\right\rangle$			
			\|(233) \rangle	\|(233)' ${ }^{\prime}$			
			$\|(322)\rangle$				
			$\|(232)\rangle$				
			\|(223) ${ }^{\text {d }}$				
	$\left\|\mathrm{B}_{i}^{(2)}\right\rangle_{i=1}^{3}$						

Figure 2: Petal-like classification of SLOCC orbits of 3-qutrit states. By noninvertible SLOCC one can go from the outer classes to the inner ones (from σ_{k} to τ_{k} also in an approximate way), thus generating the entanglement hierarchy. Note that states $\left|\mathrm{B}_{i}^{(1)}\right\rangle$ appear with a double petal because to emphasize that they can be obtained starting from either $\left|\mathrm{W}_{3}\right\rangle$ states or $\left|\mathrm{B}_{i}^{(2)}\right\rangle$ states. In contrast, $\left|\mathrm{B}_{i}^{(2)}\right\rangle$ states cannot be obtained from $\left|\mathrm{W}_{3}\right\rangle$ states

Figure 3: Using tensor rank as the third SLOCC invariant, the subfamily
$\left|(333)_{3}^{\prime}\right\rangle$ of Table I can be split into two sub-subfamilies $\left|\mathrm{X}_{3}\right\rangle$ and $\left|\mathrm{Y}_{3}\right\rangle$ with
Figure 3: Using tensor rank as the third SLOCC invariant, the subfamily
$\left|(333)_{3}^{\prime}\right\rangle$ of Table I can be split into two sub-subfamilies $\left|\mathrm{X}_{3}\right\rangle$ and $\left|\mathrm{Y}_{3}\right\rangle$ with tensor ranks equal to four and five, respectively

CONCLUSION

- One can always use n-qudit classification as a partial classification of ($n+1$)-qudit systems.
- Operational meaning (tensor rank and border rank, can be seen as the generalized Schmidt rank and its counterpart).
- This kind of classification can be considered as a reference to study (asymptotic) SLOCC interconversions among different resources based on tensor (border) rank.
- Extension of this classification to mixed states

References

[1] MG and S. Mancini, Phys. Rev. A 104, 042402 (2021).
[2] MG, S. Mancini, and G. Ottaviani, Phys. Rev. Research 2, 043003 (2020).
[3] J. M. Landsberg, Tensors: Geometry and Applications (American Mathematical Society 2012).
[4] V. Strassen, Linear Algebra Appl. 52-53, 645 (1983).
[5] T. Lickteig, Linear Algebra Appl. 69, 95 (1985)
[6] G. Ottaviani, Nagoya Math. J. 193, 95 (2009).

