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ABSTRACT

To characterize entanglement of tripartite C? ® C? @ C¢ systems, we employ algebraic-geometric tools that are invariants under Stochastic Local Operation and Classical Communication (SLOCC), namely k-secant
varieties and one-multilinear ranks (one-multiranks). Indeed, by means of them, we present a classification of tripartite pure states in terms of a finite number of families and subfamilies. At the core of it stands out a
fine-structure grouping of three-qutrit entanglement.

THE FRAMEWORK OF ALGEBRAIC GEOMETRY

Secant & Tangent Varieties One-Multiranks

Matricization: Reshaping 3-fold tensor product space H = H1 @ Ho @ Hs (H; ~ C%) to H ~ H; @ H 7, where
H; =Ch H; = C¥, and I = (i) sothat T U T = (1,2, 3).
Using Dirac notation, the flattening (matricization) of [¢)) € H reads

The space of states [1)) = > . (0,....d—11}3 Ci 4) that are fully separable has the structure of
a Segre variety which 1s embedded 1n the ambient space as follows

3
Yaqp: P x P x P PO

Mi[] = ({egl)), . .., leq_1|w)) ", Matrix Order = d x d2,

where |e;) = |j) is the computational basis of H and T denotes the matrix transposition.

o A k-secant of the Segre variety joins its £ points, each of which represents a separable
state. It corresponds to an entangled state being a superposition of £ separable states.
k-secant variety o (X3.;) = union of k-secants of the Segre variety

k-secant varieties are SLOCC invariants.

The higher k-secant fill the ambient space IP((Dd®3) when k = [%1 except for d = 3
where the generic rank is 5.

The proper k-secant, i.e. the set o (X3 ,) \ or_1(X3.,), is the union of the k-secant
hyperplanes S, C o (27) represented by

One-multiranks are SLOCC invariants.

e A state 1s genuinely entangled iff all one-multiranks are greater than one.

¢ One-multiranks of a given tensor in the k-secant are at most £.
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{p;}_ are distinct points € 3, .
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d-mode :
o Tangents are limits of secants, e.g., when one point tends to anotherone. || L=y | : %
Ei 1-mode vectors 2-mode vectors 3-mode vectors
Tensor Rank & Border Rank Ei
| :
o The rank of a tensor %) is defined as the minimum number of simple tensors (fully FI . L, 'os L, of oo pllndl
separable states) that sum to .
» The (tensor) border rank of a tensor v is defined as the smallest r such that 1) 1s a limit X e R s s L¥L, o
of tensors of rank 7. L LXL Mat, (X )& R=55) £l
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Figure 1: Flattening of a 3-order tensor to three different matrices [https://doi.org/10.1016/j.isprsjprs.2013.06.001].

Classification Algorithm

i) find families by identifying 33 1, 02(23.¢), - - -, 0k (251); ii) split families to secants and tangents by identifying 72(X3 ), - - ., e (Za_;); iii) find subfamilies by identifying one-multiranks.

EXAMPLE: 3-QUTRIT ENTANGLEMENT

In addition to the standard flattenings, for 3-qutrit systems, we have another flattening map as follows:
F o Hi Q@ H; %A2/H1 ® Hs,

/ 0 0 0 Co Cq Co —C9g —Ci10 —C11 \
0 0 0 C3 C4 s —C2 —C€13 —Ci4g
0 0 0 C6 C7 s  —Ci5 —Cig —C17
—¢ —¢ —¢ 0 0 0 €18 C19 €20
F = —C3 —C€4 —Cj 0 0 0 Co1 Co9 Co3
—¢ —¢7 —c¢g 0 0 0 C24 €25 (26
g €0 €11 —Cs —Cg9 —c¢ 0O 0 0
€12 €13 €14 —C21 —C2 —C23 0 0 0
\ ¢15 €16 €17 —Cq4 —C25 —C6 0 0 0 /
(1257 ] indicate the secant family of a given state. ]
Table I. Fine-structure classification of 3-qutrit entanglement
Zg’ 09 T9 03 T3 04 05
1 2
Sep) [GHZY) [Ws) [GHZS”) [(333)5) [(333)a) [(333)s)
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B 7)ot (332))  [(332)")
(323)) (323)")
(233)) (233)")
(322))
(232)) Figure 2: Petal-like classification of SLOCC orbits of 3-qutrit states. By noninvertible SLOCC one can go from the outer
(223)) classes to the inner ones (from o to 71 also in an approximate way), thus generating the entanglement hierarchy. Note

that states |B§1)> appear with a double petal because to emphasize that they can be obtained starting from either |W3)

states or ]B§2)> states. In contrast, |B§2)> states cannot be obtained from |W3) states.
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CONCLUSION

One can always use n-qudit classification as a partial

FINER CLASSIFICATION

Finer classification of three-qutrit entanglement:

— lim = 1) 4 £2]2))®8 _ £
|Y3>—il_r>r(l)€2((l0>+\/§|1>+ 2))" 4 (]0) 7

X3) = lim %((I0> +e[1))® +¢[111) — |000)).

11))®° — 2]000))), classification of (n + 1)-qudit systems.

Operational meaning (tensor rank and border rank, can be seen

Y3) = zi?i {1002) + |011)} as the generalized Schmidt rank and its counterpart).

1(333)3) This kind of classification can be considered as a reference to

study (asymptotic) SLOCC interconversions among different

X3) = [W3) +|111)

: . , S , resources based on tensor (border) rank.
Figure 3: Using tensor rank as the third SLOCC invariant, the subfamily

(333)3) of Table I can be split into two sub-subfamilies |X3) and [Y3) with

tensor ranks equal to four and five, respectively. Extension of this classification to mixed states ...




