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ABSTRACT

To characterize entanglement of tripartite Cd ⊗Cd ⊗Cd systems, we employ algebraic-geometric tools that are invariants under Stochastic Local Operation and Classical Communication (SLOCC), namely k-secant
varieties and one-multilinear ranks (one-multiranks). Indeed, by means of them, we present a classification of tripartite pure states in terms of a finite number of families and subfamilies. At the core of it stands out a
fine-structure grouping of three-qutrit entanglement.

THE FRAMEWORK OF ALGEBRAIC GEOMETRY

Secant & Tangent Varieties

The space of states |ψ〉 =
∑

i∈{0,...,d−1}3 ci|i〉 that are fully separable has the structure of
a Segre variety which is embedded in the ambient space as follows

Σ3
d-1 : Pd−1 ×Pd−1 ×Pd−1 ↪→ P

d3−1 .

• A k-secant of the Segre variety joins its k points, each of which represents a separable
state. It corresponds to an entangled state being a superposition of k separable states.

k-secant variety σk(Σ3
d-1) ≡ union of k-secants of the Segre variety

k-secant varieties are SLOCC invariants.

The higher k-secant fill the ambient space P(Cd⊗3) when k = d d3

3d−2e, except for d = 3
where the generic rank is 5.
The proper k-secant, i.e. the set σk(Σ3

d-1) \ σk−1(Σ3
d-1), is the union of the k-secant

hyperplanes Sk ⊂ σk(Σn
1 ) represented by

Sk =
∑k

i=1
λipi , {λi}k

i=1 6= 0 , {pi}k
i=1 are distinct points ∈ Σ3

d-1 .

• Tangents are limits of secants, e.g., when one point tends to another one.

One-Multiranks

Matricization: Reshaping 3-fold tensor product spaceH = H1⊗H2⊗H3 (Hi ' Cd) toH ' HI ⊗HĪ , where
HI = Cd,HĪ = Cd2

, and I = (i) so that I ∪ Ī = (1, 2, 3).
Using Dirac notation, the flattening (matricization) of |ψ〉 ∈ H reads

MI [ψ] = (〈e0|ψ〉, . . . , 〈ed−1|ψ〉)T
, Matrix Order = d× d2 ,

where |ej〉 = |j〉 is the computational basis ofHI and T denotes the matrix transposition.

One-multiranks are SLOCC invariants.

• A state is genuinely entangled iff all one-multiranks are greater than one.

• One-multiranks of a given tensor in the k-secant are at most k.

Figure 1: Flattening of a 3-order tensor to three different matrices [https://doi.org/10.1016/j.isprsjprs.2013.06.001].

Tensor Rank & Border Rank

• The rank of a tensor ψ is defined as the minimum number of simple tensors (fully
separable states) that sum to ψ.
• The (tensor) border rank of a tensor ψ is defined as the smallest r such that ψ is a limit
of tensors of rank r.

Example: |W3〉 = |001〉+ |010〉+ |100〉 = lim
ε→0

1
ε

(
(|0〉+ ε|1〉)⊗3 − |000〉

)
.

Classification Algorithm

i) find families by identifying Σ3
d-1, σ2(Σ3

d-1), . . . , σk(Σ3
d-1); ii) split families to secants and tangents by identifying τ2(Σ3

d-1), . . . , τk(Σ3
d-1); iii) find subfamilies by identifying one-multiranks.

EXAMPLE: 3-QUTRIT ENTANGLEMENT

In addition to the standard flattenings, for 3-qutrit systems, we have another flattening map as follows:

F : H1 ⊗H∗2 → Λ2H1 ⊗H3 ,

F =



0 0 0 c0 c1 c2 −c9 −c10 −c11
0 0 0 c3 c4 c5 −c12 −c13 −c14
0 0 0 c6 c7 c8 −c15 −c16 −c17
−c0 −c1 −c2 0 0 0 c18 c19 c20
−c3 −c4 −c5 0 0 0 c21 c22 c23
−c6 −c7 −c8 0 0 0 c24 c25 c26
c9 c10 c11 −c18 −c19 −c20 0 0 0
c12 c13 c14 −c21 −c22 −c23 0 0 0
c15 c16 c17 −c24 −c25 −c26 0 0 0


.

d rankF
2 e indicate the secant family of a given state.

Table I. Fine-structure classification of 3-qutrit entanglement

Σ3
2 σ2 τ2 σ3 τ3 σ4 σ5

|Sep〉 |GHZ(1)
3 〉 |W3〉 |GHZ(2)

3 〉 |(333)′3〉 |(333)4〉 |(333)5〉
|B(1)

i 〉3i=1 |(332)〉 |(332)′〉
|(323)〉 |(323)′〉
|(233)〉 |(233)′〉
|(322)〉
|(232)〉
|(223)〉
|B(2)

i 〉3i=1

Figure 2: Petal-like classification of SLOCC orbits of 3-qutrit states. By noninvertible SLOCC one can go from the outer
classes to the inner ones (from σk to τk also in an approximate way), thus generating the entanglement hierarchy. Note
that states |B(1)

i 〉 appear with a double petal because to emphasize that they can be obtained starting from either |W3〉
states or |B(2)

i 〉 states. In contrast, |B(2)
i 〉 states cannot be obtained from |W3〉 states.

FINER CLASSIFICATION
Finer classification of three-qutrit entanglement:

|Y3〉 = lim
ε→0

1
ε2 ((|0〉+ ε√

2
|1〉+ ε2|2〉)⊗3 + (|0〉 − ε√

2
|1〉)⊗3 − 2|000〉)),

|X3〉 = lim
ε→0

1
ε

((|0〉+ ε|1〉)⊗3 + ε|111〉 − |000〉).

Figure 3: Using tensor rank as the third SLOCC invariant, the subfamily
|(333)′3〉 of Table I can be split into two sub-subfamilies |X3〉 and |Y3〉 with
tensor ranks equal to four and five, respectively.

CONCLUSION
• One can always use n-qudit classification as a partial

classification of (n+ 1)-qudit systems.

• Operational meaning (tensor rank and border rank, can be seen

as the generalized Schmidt rank and its counterpart).

• This kind of classification can be considered as a reference to

study (asymptotic) SLOCC interconversions among different

resources based on tensor (border) rank.

• Extension of this classification to mixed states ...
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