# Multi-Slice Clustering (MSC) for 3-order Tensors 

Dina Faneva Andriantsiory ${ }^{1,2}$ Joseph Ben Geloun ${ }^{1,2}$ Mustapha Lebbah 1,2

${ }^{1}$ Université Sorbone Paris Nord<br>'Laboratoire d'lnformatique de Paris Nord (LIPN). UMR CNRS 7030

## Motivations

## The clustering algorithms

depend on the number of clusters or the cluster size as data input. Nevertheless, for real data these inputs might be very difficult to assess from the outset
only guarantee a clear distinction between a given cluster and the rest of the data

- does not guarantee the strong similarity withing a cluster
shoula make sure about separation and strong correlation within the cluster.


Main goal of the MSC algorithm

## The MSC algorithm

- solves the parameter issue
- determines and gathers the indices of the matrix slices that are similar in each dimension of the tensor.


## Theoritical guarantee

- Let $\mathcal{T} \approx \mathcal{X}+\mathcal{Z}$ where $\mathcal{X}$ is the signal tensor and $\mathcal{Z}$ is a noise tensor

Assumption: $\mathcal{X}$ is a rank one tensor $\mathcal{X} \approx \gamma \mathbf{w} \otimes \mathbf{u} \otimes \mathbf{v}$, and the entries of $\mathcal{Z}$ are i.i.d and have a standard normal distribution.

## Theroem 1:

Let $l=\left|J_{1}\right|$, assume that $\sqrt{\epsilon} \leq \frac{1}{m_{1}-l} \cdot \forall i, n \in J_{1}$, for $\lambda=\Omega(\mu)$, there is a constant $c_{1}>0$ such
that

$$
\begin{equation*}
\left|d_{i}-d_{n}\right| \leq l \frac{\epsilon}{2}+\sqrt{\log \left(m_{1}-l\right)} \tag{1}
\end{equation*}
$$

holds with probability at least $1-e\left(m_{1}-l\right)^{-c}$

## Theorem 2 :

For $i \in \bar{J}_{1}$, if $\lambda=\Omega\left(\mu m_{1}\right)$,

$$
\begin{equation*}
d_{i} \leq \frac{l}{m_{1}}+\sqrt{\log \left(m_{1}-l\right)} \tag{2}
\end{equation*}
$$

with probability at least $1-e\left(m_{1}-l\right)^{-c_{1}}$ with $c_{1}>0$.

## Proposition

Let $J_{1} \subset\left[m_{1}\right]$ the set of all indices of the cluster in the first dimension. Then

$$
\begin{equation*}
\operatorname{dist}\left(d\left(J_{1}\right), d\left(\bar{J}_{1}\right)\right) \geq l\left(1-\frac{\epsilon}{2}-\frac{1}{m_{1}}\right)-\sqrt{\log \left(m_{1}-l\right)}, \tag{3}
\end{equation*}
$$

MSC clustering algorithm
MSC clustering algorithm
 size equal to 10 .

Synthetic data set : Generated according to equation (1), with size $50 \times 50 \times 50$ and cluster


Figure 2. Recovery rate and similarity measure of tensor biclustering, for $\gamma \in[20,150]$ : (a) with $\epsilon=0.005$ and (b)

Real data set: We use the flow injection analysis (FIA) dataset, with size 12 (samples) $\times 100$ (wavelengths) $\times 89$ (times) and we choose $\epsilon=0.00013$.

| Frobinius distance fibers correlation |  |  |
| :--- | :--- | :--- |
| mode-1 | 3.08616 | 0.99915 |
| mode-2 | 0.40307 | 0.97164 |
| mode-3 | 1.05795 | 0.99059 |

Evaluation of the cluster quality: We add a random index to the cluster

| frobenius distance fibers correlation MSE of triclustering |  |  |  |
| :---: | :---: | :---: | :---: |
| mode-1 | 3.17592 | 0.81419 | 0.49257 |
| mode-2 | 3.83777 | 0.74525 | 0.51133 |
| mode-3 | 4.86486 | 0.81829 | 1.19725 |

Table 2. Similarity measure within the cluster.

Where:

- $T_{i}=\mathcal{T}(i,:,:)$ or $\mathcal{T}(:, i,:)$ or $\mathcal{T}(:, i,:)$ for $j=1,2$ or 3 , respectively.
- $M_{i}$ is the $i$-the column of the matrix $M$
- $\lambda=\max _{i} \hat{\lambda}_{i}$ where $\hat{\lambda}_{i}$ is the largest eigenvalue of $C$
- $J_{1}, J_{2}$ and $J_{3}$ are the clusters selected from mode-1, mode-2, and mode-3 of the tensor, respectively.


## Perspectives

- Apply MSC algorithm to large tensor size (using parallel and distributed system). - Generalize MSC algorithm to multiple cluster detection.

References

[^0]
[^0]:    (2) Dine Faneva Andriantion, Joseph Ben Geloun, and Mustapha Lebbah. Mult-sicice clustering for 3 -order tensor. In 202120 2oth 1 EEE
    
     Associates, Inc., 2017.

