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Overview

Joint work with Charles Bordenave (CNRS Marseille)
Plan:

1. Asymptotic strong freeness: statement of the result.
2. Operator valued non-backtracing theory.

3. Centered Weingarten calculus.

4. Random Unitary vs GUE.



NC distribution and convergences

> Let Xl("), .. ,X(S”) be elements of a tracial NCPS (A("), 7(n)
and Xi,..., Xy be elements of a tracial NCPS (A, 7).
Convergence in NC distribution holds iff for any NC
polynomial P in d variables and its adjoint,

M px\My = 7P(X;)

» If, in addition,
1PX™)| = |IPCX)],

then one speaks of strong convergence



NC distribution and convergences

> In general, (A", 7(") are matrix algebras.

» When the traces are faithful,

im inf |P(X)]| = 11POX)|

always holds

» The inequality can be strict, e.g. take X; = U; ® U; where U;
are LPS (or expander) generators acting on an irrep.



Asymptotic freeness

> If the limiting objects U, ..., Uy are x-free then one speaks
of asymptotic freeness or strong asymptotic freeness.

» Important examples of asymptotic freeness were given by
Voiculescu: iid GUE copies, or iid Haar distributed unitaries of
dimension n.

» Other examples by Nica (random permutations), Biane
(truncated Jucys Murphy elements).



Strong Asymptotic freeness

» The first series of examples of strong asymptotic freeness were
obtained by Haagerup-Thorbjgrnsen: iid GUE (2005). This was
extended in many directions (Capitaine, Donati, Male, ....).

» The second class of examples was obtained by C & Male: iid
Haar random unitary matrices (2012). Remark: a quantitative
version was obtained by F. Parraud with free stochastic
calculus.

» More recently, Bordenave and C obtained similar results for
random permutations (2018).



Strong Asymptotic freeness: main result

Theorem (Bordenave, C — 2020)

(U?q_ ® U,-®q+),-:1,m7d are strongly asymptotically free as n — oo

on the orthogonal of fixed point spaces.

The same holds true for random orthogonal matrices.

Corollary

For any non-trivial signature (X, p), consider for n large enough
(when defined) the quotient image of U, under the irreducible
representation U(V) , »). Take d iid copies according to the Haar
measure. They are strongly asymptotically free as n — oc.



Main result: comments

» The corollary is a zero-one law. It tells (in this context) that
the only obstruction for strong freeness are the fixed points.
This sheds light on the important counterxample U; ® U;.

» The corollary follows from the main theorem because every
irrep is contained in a tensor representation of the theorem.



Main result: geometric considerations

» The result is not surprising: moments converge faster to zero
for tensors (so, asymptotic freeness is not difficult).
» But the evaluation of the operator norm is hard: same amount

of randomness, but sup to be taken over a much larger space
(so, strong asymptotic freeness is much harder).



Main result: geometric considerations

» For ‘regular’ unitary matrices, the size of an eta-net of vectors
is (C/n)™ and the concentration speed is exp(—ce?n).

» In our model, concentration speed does not change but the
eta-net becomes (C/n)™ so it becomes impossible to obtain
strong convergence ‘up to a universal constant’ by soft
methods.



Main result: analysis vs combinatorics

» Although asymptotic freeness results can be obtained by
moment computations, strong asymptotic freeness results
until 2018 all relied on analysis: linearization, analytic
properties of matrix valued Stieltjes transform (IBP -
Schwinger-Dyson - loop equation), complex analysis: moments
methods were too bulky to implement.

» However, Bordenave and C's results for random permutations
(2018) rely on moments through new techniques.

P> Here we need to expand these techniques.



Outline of the proof

» As in Bordenave-C-2018, we need to evaluate the norm of

d
Z aj ® X,'(n)a
i=—d
where X = X("* and X{" = Id. [linearization step]
» Even this simplified object is too hard to evaluate with
moments. We replace it by an operator valued
non-backtracking matrix.



Operator valued non-backtracking theory

We consider (b1, ..., b;) elements in B(H) where H is a Hilbert
space. We assume that the index set is endowed with an involution
i~ i* (and i** =i for all /).

The non-backtracking operator associated to the /-tuple of
matrices (by, ..., bj) is the operator on B(H @ C') defined by

B = E bj ® E,'j, (1)
JF#i
Left non-backtracking operator:

B=> b®E;. (2)
J#i*



Operator valued non-backtracking theory

Theorem

Let \ € C satisfy A2 ¢ {spec(b;b;+) : i € [[/]]}. Define the operator
Ay on H through

1
Av=bo(\) + ) bi(A),  bi(A) = Abi(A\ — b= b))
i=1

and
¢

bo(A\) = —1 — Z bi(\2 — b= b;) L b;-.

Then X € o(B) if and only if 0 € o(A)).



Operator valued non-backtracking theory

» In practice we just have to understand the spectral radius of
the operator and therefore, evaluate 7(B7 B*T) with T
growing with the matrix dimension.

» The non backtracking structure makes calculations tractable...
through Weingarten calculus.

» This answers a question by Pisier (prove a variant of HT in
the unitary setup with moment methods).



Centered Weingarten calculus

» For a random variable X, we define [X] = X — E(X) (its

centering).
» For a symbol € € {-, —} and z € C, we take the notation that
zf=zife=-and z° =Z if e = —. We want to to compute

for U = (Ujj) Haar distributed on U,, expresssions of the form
T ke
E H H Uf(ttll}’tl
t=1 =1

in a meaningful way.



Centered Weingarten calculus

> We can write a Weingarten formula

T ke
E H [H Uiyl = Z do,x0r,y Wg(o, T, part)

t=1 /=1 o,7€Py(ki+...+kT)

» The function Wg depends on the pairings and the partition.

Theorem
Wg decays as =% where
k= (ki+...4+ kr)/2+ d(0,T) + 2#lonesome blocks.

» This estimate is uniform on k ~ Poly(n).



Comparison with iid gaussians: problem

> We want to compare y/nUj; with iid complex gaussian
matrices (G,-J-),-Je[[k]].

> Known results:
Convergence in total variation distance for k << y/n
(Olshanski, C, Jiang).
Uniform convergence of joint moments of order k << n?/7
(C, Matsumoto).



Comparison with iid gaussians: why?

» Observation (Bordenave, C): if the centered moments of
V/nUjj and (Gj); jeqpiy) have a uniformly equivalent asymptotic
behavior then we can conclude.

> We use the fact that there exists a Wick calculus for centered
gaussian moments (sum over non-lonesome pairings)



Comparison with iid gaussians

Technical result:

Let k even with 2k”/2 < n? and n > 4, 7 = (7¢) (7)) be 2
partition of [[k]] such that each block contains at most / elements.
Let € € {-,—}* be a balanced sequence. For any x, y in [[n]]¥, we
have

T

E(ITIIT v ))

t=1 icm

T

<(1+ 5)E(H([ H(Gf,."y, +m)] +m2)),

t=1 Jjem;

k/2

with 6 = 3k7/2n=2, ny = IV2k7/8n=1/2 and np = kfn~ /4,
Moreover, if each block 7; contains an element with ¢; = - and
another with &; = —, the same bound holds with 7, = k/n=1/2.



Thank you!



