Generalized strong convergence in iid random unitaries

Benoît Collins
Kyoto University

CIRM / Random Tensors, 14 March 2021

Overview

Joint work with Charles Bordenave (CNRS Marseille) Plan:

1. Asymptotic strong freeness: statement of the result.
2. Operator valued non-backtracing theory.
3. Centered Weingarten calculus.
4. Random Unitary vs GUE.

NC distribution and convergences

- Let $X_{1}^{(n)}, \ldots, X_{d}^{(n)}$ be elements of a tracial $\operatorname{NCPS}\left(A^{(n)}, \tau^{(n)}\right)$ and X_{1}, \ldots, X_{d} be elements of a tracial $\operatorname{NCPS}(A, \tau)$. Convergence in NC distribution holds iff for any NC polynomial P in d variables and its adjoint,

$$
\tau^{(n)} P\left(X_{i}^{(n)}\right) \rightarrow \tau P\left(X_{i}\right)
$$

- If, in addition,

$$
\left\|P\left(X_{i}^{(n)}\right)\right\| \rightarrow\left\|P\left(X_{i}\right)\right\|
$$

then one speaks of strong convergence

NC distribution and convergences

- In general, $\left(A^{(n)}, \tau^{(n)}\right)$ are matrix algebras.
- When the traces are faithful,

$$
\liminf _{n}\left\|P\left(X_{i}^{(n)}\right)\right\| \geq\left\|P\left(X_{i}\right)\right\|
$$

always holds

- The inequality can be strict, e.g. take $X_{i}=U_{i} \otimes \bar{U}_{i}$ where U_{i} are LPS (or expander) generators acting on an irrep.

Asymptotic freeness

- If the limiting objects U_{1}, \ldots, U_{d} are $*$-free then one speaks of asymptotic freeness or strong asymptotic freeness.
- Important examples of asymptotic freeness were given by Voiculescu: iid GUE copies, or iid Haar distributed unitaries of dimension n.
- Other examples by Nica (random permutations), Biane (truncated Jucys Murphy elements).

Strong Asymptotic freeness

- The first series of examples of strong asymptotic freeness were obtained by Haagerup-Thorbjørnsen: iid GUE (2005). This was extended in many directions (Capitaine, Donati, Male,).
- The second class of examples was obtained by C \& Male: iid Haar random unitary matrices (2012). Remark: a quantitative version was obtained by F. Parraud with free stochastic calculus.
- More recently, Bordenave and C obtained similar results for random permutations (2018).

Strong Asymptotic freeness: main result

Theorem (Bordenave, C - 2020)
$\left(\bar{U}_{i}^{\otimes q_{-}} \otimes U_{i}^{\otimes q_{+}}\right)_{i=1, \ldots, d}$ are strongly asymptotically free as $n \rightarrow \infty$ on the orthogonal of fixed point spaces.
The same holds true for random orthogonal matrices.

Corollary

For any non-trivial signature (λ, ρ), consider for n large enough (when defined) the quotient image of \mathbb{U}_{n} under the irreducible representation $\mathbb{U}\left(V_{\lambda, \rho, n}\right)$. Take d iid copies according to the Haar measure. They are strongly asymptotically free as $n \rightarrow \infty$.

Main result: comments

- The corollary is a zero-one law. It tells (in this context) that the only obstruction for strong freeness are the fixed points. This sheds light on the important counterxample $U_{i} \otimes \bar{U}_{i}$.
- The corollary follows from the main theorem because every irrep is contained in a tensor representation of the theorem.

Main result: geometric considerations

- The result is not surprising: moments converge faster to zero for tensors (so, asymptotic freeness is not difficult).
- But the evaluation of the operator norm is hard: same amount of randomness, but sup to be taken over a much larger space (so, strong asymptotic freeness is much harder).

Main result: geometric considerations

- For 'regular' unitary matrices, the size of an eta-net of vectors is $(C / \eta)^{n}$ and the concentration speed is $\exp \left(-c \epsilon^{2} n\right)$.
- In our model, concentration speed does not change but the eta-net becomes $(C / \eta)^{n^{q}}$ so it becomes impossible to obtain strong convergence 'up to a universal constant' by soft methods.

Main result: analysis vs combinatorics

- Although asymptotic freeness results can be obtained by moment computations, strong asymptotic freeness results until 2018 all relied on analysis: linearization, analytic properties of matrix valued Stieltjes transform (IBP -Schwinger-Dyson - loop equation), complex analysis: moments methods were too bulky to implement.
- However, Bordenave and C's results for random permutations (2018) rely on moments through new techniques.
- Here we need to expand these techniques.

Outline of the proof

- As in Bordenave-C-2018, we need to evaluate the norm of

$$
\sum_{i=-d}^{d} a_{i} \otimes X_{i}^{(n)}
$$

where $X_{-i}^{(n)}=X_{i}^{(n) *}$ and $X_{0}^{(n)}=I d$. [linearization step]

- Even this simplified object is too hard to evaluate with moments. We replace it by an operator valued non-backtracking matrix.

Operator valued non-backtracking theory

We consider $\left(b_{1}, \ldots, b_{l}\right)$ elements in $\mathcal{B}(\mathcal{H})$ where \mathcal{H} is a Hilbert space. We assume that the index set is endowed with an involution $i \mapsto i^{*}$ (and $i^{* *}=i$ for all i).
The non-backtracking operator associated to the ℓ-tuple of matrices $\left(b_{1}, \ldots, b_{l}\right)$ is the operator on $\mathcal{B}\left(\mathcal{H} \otimes \mathbb{C}^{\prime}\right)$ defined by

$$
\begin{equation*}
B=\sum_{j \neq i^{*}} b_{j} \otimes E_{i j} \tag{1}
\end{equation*}
$$

Left non-backtracking operator:

$$
\begin{equation*}
\widetilde{B}=\sum_{j \neq i^{*}} b_{i} \otimes E_{i j} \tag{2}
\end{equation*}
$$

Operator valued non-backtracking theory

Theorem
Let $\lambda \in \mathbb{C}$ satisfy $\lambda^{2} \notin\left\{\operatorname{spec}\left(b_{i} b_{i^{*}}\right): i \in[[/]]\right\}$. Define the operator A_{λ} on \mathcal{H} through

$$
A_{\lambda}=b_{0}(\lambda)+\sum_{i=1}^{\ell} b_{i}(\lambda), \quad b_{i}(\lambda)=\lambda b_{i}\left(\lambda^{2}-b_{i *} b_{i}\right)^{-1}
$$

and

$$
b_{0}(\lambda)=-1-\sum_{i=1}^{\ell} b_{i}\left(\lambda^{2}-b_{i *} b_{i}\right)^{-1} b_{i^{*}}
$$

Then $\lambda \in \sigma(B)$ if and only if $0 \in \sigma\left(A_{\lambda}\right)$.

Operator valued non-backtracking theory

- In practice we just have to understand the spectral radius of the operator and therefore, evaluate $\tau\left(B^{T} B^{* T}\right)$ with T growing with the matrix dimension.
- The non backtracking structure makes calculations tractable... through Weingarten calculus.
- This answers a question by Pisier (prove a variant of HT in the unitary setup with moment methods).

Centered Weingarten calculus

- For a random variable X, we define $[X]=X-E(X)$ (its centering).
- For a symbol $\varepsilon \in\{\cdot,-\}$ and $z \in \mathbb{C}$, we take the notation that $z^{\varepsilon}=z$ if $\varepsilon=$. and $z^{\varepsilon}=\bar{z}$ if $\varepsilon=-$. We want to to compute for $U=\left(U_{i j}\right)$ Haar distributed on \mathbb{U}_{n}, expresssions of the form

$$
E \prod_{t=1}^{T}\left[\prod_{l=1}^{k_{t}} U_{x_{t \mid} \mid y_{t l}}^{\varepsilon_{t \mid}}\right]
$$

in a meaningful way.

Centered Weingarten calculus

- We can write a Weingarten formula

$$
E \prod_{t=1}^{T}\left[\prod_{l=1}^{k_{t}} U_{x_{t \mid l} y_{t t}}^{\varepsilon_{t l}}\right]=\sum_{\sigma, \tau \in P_{2}\left(k_{1}+\ldots+k_{T}\right)} \delta_{\sigma, x} \delta_{\tau, y} W g(\sigma, \tau, \text { part })
$$

- The function $W g$ depends on the pairings and the partition.

Theorem
$W g$ decays as n^{-k} where
$k=\left(k_{1}+\ldots+k_{T}\right) / 2+d(\sigma, \tau)+2$ \#lonesome blocks.

- This estimate is uniform on $k \sim \operatorname{Poly}(n)$.

Comparison with iid gaussians: problem

- We want to compare $\sqrt{n} U_{i j}$ with iid complex gaussian matrices $\left(G_{i j}\right)_{i, j \in[[k]]}$.
- Known results:

Convergence in total variation distance for $k \ll \sqrt{n}$ (Olshanski, C, Jiang).
Uniform convergence of joint moments of order $k \ll n^{2 / 7}$ (C, Matsumoto).

Comparison with iid gaussians: why?

- Observation (Bordenave, C): if the centered moments of $\sqrt{n} U_{i j}$ and $\left(G_{i j}\right)_{i, j \in[[k]]}$ have a uniformly equivalent asymptotic behavior then we can conclude.
- We use the fact that there exists a Wick calculus for centered gaussian moments (sum over non-lonesome pairings)

Comparison with iid gaussians

Technical result:
Let k even with $2 k^{7 / 2} \leqslant n^{2}$ and $n \geqslant 4, \pi=\left(\pi_{t}\right)_{t \in[[T]]}$ be a partition of $[[k]]$ such that each block contains at most $/$ elements. Let $\varepsilon \in\{\cdot,-\}^{k}$ be a balanced sequence. For any x, y in $[[n]]^{k}$, we have
$n^{k / 2}\left|E\left(\prod_{t=1}^{T}\left[\prod_{i \in \pi_{t}} U_{x_{i} y_{i}}^{\varepsilon_{i}}\right]\right)\right| \leq(1+\delta) E\left(\prod_{t=1}^{T}\left(\left[\prod_{i \in \pi_{t}}\left(G_{x_{i} y_{i}}^{\varepsilon_{i}}+\eta_{1}\right)\right]+\eta_{2}\right)\right)$,
with $\delta=3 k^{7 / 2} n^{-2}, \eta_{1}=I^{1 / 2} k^{7 / 8} n^{-1 / 2}$ and $\eta_{2}=k^{\ell} n^{-1 / 4}$.
Moreover, if each block π_{t} contains an element with $\varepsilon_{i}=\cdot$ and another with $\varepsilon_{i}=-$, the same bound holds with $\eta_{2}=k^{\prime} n^{-1 / 2}$.

Thank you!

