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Overview

Joint work with Charles Bordenave (CNRS Marseille)
Plan:

1. Asymptotic strong freeness: statement of the result.

2. Operator valued non-backtracing theory.

3. Centered Weingarten calculus.

4. Random Unitary vs GUE.



NC distribution and convergences

I Let X
(n)
1 , . . . ,X

(n)
d be elements of a tracial NCPS (A(n), τ (n))

and X1, . . . ,Xd be elements of a tracial NCPS (A, τ).
Convergence in NC distribution holds iff for any NC
polynomial P in d variables and its adjoint,

τ (n)P(X
(n)
i )→ τP(Xi )

I If, in addition,
||P(X

(n)
i )|| → ||P(Xi )||,

then one speaks of strong convergence



NC distribution and convergences

I In general, (A(n), τ (n)) are matrix algebras.

I When the traces are faithful,

lim inf
n
||P(X

(n)
i )|| ≥ ||P(Xi )||

always holds

I The inequality can be strict, e.g. take Xi = Ui ⊗ U i where Ui

are LPS (or expander) generators acting on an irrep.



Asymptotic freeness

I If the limiting objects U1, . . . ,Ud are ∗-free then one speaks
of asymptotic freeness or strong asymptotic freeness.

I Important examples of asymptotic freeness were given by
Voiculescu: iid GUE copies, or iid Haar distributed unitaries of
dimension n.

I Other examples by Nica (random permutations), Biane
(truncated Jucys Murphy elements).



Strong Asymptotic freeness

I The first series of examples of strong asymptotic freeness were
obtained by Haagerup-Thorbjørnsen: iid GUE (2005). This was
extended in many directions (Capitaine, Donati, Male, ....).

I The second class of examples was obtained by C & Male: iid
Haar random unitary matrices (2012). Remark: a quantitative
version was obtained by F. Parraud with free stochastic
calculus.

I More recently, Bordenave and C obtained similar results for
random permutations (2018).



Strong Asymptotic freeness: main result

Theorem (Bordenave, C – 2020)

(U
⊗q−
i ⊗ U⊗q+i )i=1,...,d are strongly asymptotically free as n→∞

on the orthogonal of fixed point spaces.

The same holds true for random orthogonal matrices.

Corollary

For any non-trivial signature (λ, ρ), consider for n large enough
(when defined) the quotient image of Un under the irreducible
representation U(Vλ,ρ,n). Take d iid copies according to the Haar
measure. They are strongly asymptotically free as n→∞.



Main result: comments

I The corollary is a zero-one law. It tells (in this context) that
the only obstruction for strong freeness are the fixed points.
This sheds light on the important counterxample Ui ⊗ U i .

I The corollary follows from the main theorem because every
irrep is contained in a tensor representation of the theorem.



Main result: geometric considerations

I The result is not surprising: moments converge faster to zero
for tensors (so, asymptotic freeness is not difficult).

I But the evaluation of the operator norm is hard: same amount
of randomness, but sup to be taken over a much larger space
(so, strong asymptotic freeness is much harder).



Main result: geometric considerations

I For ‘regular’ unitary matrices, the size of an eta-net of vectors
is (C/η)n and the concentration speed is exp(−cε2n).

I In our model, concentration speed does not change but the
eta-net becomes (C/η)n

q
so it becomes impossible to obtain

strong convergence ‘up to a universal constant’ by soft
methods.



Main result: analysis vs combinatorics

I Although asymptotic freeness results can be obtained by
moment computations, strong asymptotic freeness results
until 2018 all relied on analysis: linearization, analytic
properties of matrix valued Stieltjes transform (IBP -
Schwinger-Dyson - loop equation), complex analysis: moments
methods were too bulky to implement.

I However, Bordenave and C’s results for random permutations
(2018) rely on moments through new techniques.

I Here we need to expand these techniques.



Outline of the proof

I As in Bordenave-C-2018, we need to evaluate the norm of

d∑
i=−d

ai ⊗ X
(n)
i ,

where X
(n)
−i = X

(n)∗
i and X

(n)
0 = Id . [linearization step]

I Even this simplified object is too hard to evaluate with
moments. We replace it by an operator valued
non-backtracking matrix.



Operator valued non-backtracking theory

We consider (b1, . . . , bl) elements in B(H) where H is a Hilbert
space. We assume that the index set is endowed with an involution
i 7→ i∗ (and i∗∗ = i for all i).
The non-backtracking operator associated to the `-tuple of
matrices (b1, . . . , bl) is the operator on B(H⊗ Cl) defined by

B =
∑
j 6=i∗

bj ⊗ Eij , (1)

Left non-backtracking operator:

B̃ =
∑
j 6=i∗

bi ⊗ Eij . (2)



Operator valued non-backtracking theory

Theorem
Let λ ∈ C satisfy λ2 /∈ {spec(bibi∗) : i ∈ [[l ]]}. Define the operator
Aλ on H through

Aλ = b0(λ) +
∑̀
i=1

bi (λ) , bi (λ) = λbi (λ
2 − bi∗bi )

−1

and

b0(λ) = −1−
∑̀
i=1

bi (λ
2 − bi∗bi )

−1bi∗ .

Then λ ∈ σ(B) if and only if 0 ∈ σ(Aλ).



Operator valued non-backtracking theory

I In practice we just have to understand the spectral radius of
the operator and therefore, evaluate τ(BTB∗T ) with T
growing with the matrix dimension.

I The non backtracking structure makes calculations tractable...
through Weingarten calculus.

I This answers a question by Pisier (prove a variant of HT in
the unitary setup with moment methods).



Centered Weingarten calculus

I For a random variable X , we define [X ] = X − E (X ) (its
centering).

I For a symbol ε ∈ {·,−} and z ∈ C, we take the notation that
zε = z if ε = · and zε = z if ε = −. We want to to compute
for U = (Uij) Haar distributed on Un, expresssions of the form

E
T∏
t=1

[
kt∏
l=1

Uεtl
xtlytl

]

in a meaningful way.



Centered Weingarten calculus

I We can write a Weingarten formula

E
T∏
t=1

[
kt∏
l=1

Uεtl
xtlytl

] =
∑

σ,τ∈P2(k1+...+kT )

δσ,xδτ,yWg(σ, τ, part)

I The function Wg depends on the pairings and the partition.

Theorem
Wg decays as n−k where
k = (k1 + . . .+ kT )/2 + d(σ, τ) + 2#lonesome blocks.

I This estimate is uniform on k ∼ Poly(n).



Comparison with iid gaussians: problem

I We want to compare
√
nUij with iid complex gaussian

matrices (Gij)i ,j∈[[k]].

I Known results:
Convergence in total variation distance for k <<

√
n

(Olshanski, C, Jiang).
Uniform convergence of joint moments of order k << n2/7

(C, Matsumoto).



Comparison with iid gaussians: why?

I Observation (Bordenave, C): if the centered moments of√
nUij and (Gij)i ,j∈[[k]] have a uniformly equivalent asymptotic

behavior then we can conclude.

I We use the fact that there exists a Wick calculus for centered
gaussian moments (sum over non-lonesome pairings)



Comparison with iid gaussians

Technical result:
Let k even with 2k7/2 6 n2 and n > 4, π = (πt)t∈[[T ]] be a
partition of [[k]] such that each block contains at most l elements.
Let ε ∈ {·,−}k be a balanced sequence. For any x , y in [[n]]k , we
have

nk/2

∣∣∣∣∣E (
T∏
t=1

[ ∏
i∈πt

Uεi
xiyi

]
)

∣∣∣∣∣ ≤ (1 + δ)E (
T∏
t=1

(
[ ∏
i∈πt

(G εi
xiyi

+ η1)
]

+ η2)),

with δ = 3k7/2n−2, η1 = l1/2k7/8n−1/2 and η2 = k`n−1/4.
Moreover, if each block πt contains an element with εi = · and
another with εi = −, the same bound holds with η2 = k ln−1/2.



Thank you!


