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Tail Bounds for Random Variables
In probability theory, tail bounds (concentration inequalities) provide bounds on
how a random variable deviates from some value, e.g., its expected value. The
law of large numbers of classical probability theory states that sums of
independent random variables are, close to their expectation with a large
probability. Common tail bounds are:

Theorem 1 (Bernstein Bound for RVs)

Let X1, Xy, ..., X, be independent Bernoulli random variables taking values +1
and —1 with probability 1/2 (this distribution is also known as the Rademacher
distribution), and 0 be a given positive real number, then we have

) EZH:X >0 <2e o (1)
\[n & =P\ 25 203)
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Theorem 2 (Chernoff Bound for RVs)
Let X1, Xa, ..., X, be independent random variables taking values {0,1} with

X = > X;, and = EX, then we have
i=1

e’ .
Pr(X > (1+0)u) < (W) ) 2)

where § > 0.

How about tail bounds for random matrices? We have to summarize a random
matrix by a scaler value, e.g., the maximum eigenvalue, matrix norm, etc, before
comparing to a real number. For example, we have following theorem about
Matrix Chernoff bound, it is [Tro12]

Theorem 3 (Chernoff Bound for Random Matrices)

Consider a finite sequence X; of independent, random, Hermitian matrices with
dimension m. Suppose we have X; > 0 and Amax (Xi) < R almost surely, we then
have

Hmax

& R

u e
Pr </\max <Z Xi) > (1 + 5)Nmax) <m {W} s (3) IeRELATON
i=1

n
where Hmax = >\ma>< (Z EXI) . '.
i=1
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Applications of Tail Bounds

Tail bounds for random variables or random matrices have already found
a place in many areas of the mathematical sciences, including [Tro19]

>
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numerical linear algebra
combinatorics
algorithms analysis
optimization

quantum information
statistics

signal processing
machine learning

uncertainty quantification
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Why Tail Bounds for Random Tensors

» In recent years, tensors have been applied to deal with
multirelational data in science and engineering which is crucial in
current Big Data era.

» Very few works about tail bounds for random tensors.

» Unlike scalers or matrices, there are different ways to define the
product between two tensors. We will discuss tensors under Einstein
product and T-product.
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Tensor Basic Facts Under Einstein Product

The Einstein product (or simply referred to as tensor product in this
work) Xy Y € Chx-xInxKix--xKi jg given by

def

(X *n y)h,--' siv sk, ke =
Z iy sinas i Do vk (4)

Juse N

We also list other crucial tensor operations here. The trace of a square
tensor is equivalent to the summation of all diagonal entries such that

TI’(X) “ Z )(,'1’...’,'%,'1’...7,',\/,. (5)
1<ii<l;, j€[M]

The inner product of two tensors X, ) € ChxXImxhx-XJIv is given by

INVENRELATION

(X, V) ETr (XM %m ). (6)
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Tensor Functions
Given a function g : R — R, the mapping result of a diagonal tensor by the
function g is to obtain another same size diagonal tensor with diagonal entry
mapped by the function g. Then, the function g can be extended to allow a
Hermitian tensor X € Ch>>xxhx--xlu 55 an input argument as

g(X) ZUxp g(N) s U, where X = Uy Axp UM (7)

The spectral mapping theorem asserts that each eigenvale of g(X') is equal
to g(\) for some eigenvalue A of X'. From the semidefinite ordering of
tensors, we also have

f(x) > g(x),for x € [a, b] = f(X) > g(X), for eigenvalues of X € [a, b]; (8)

where [a, b] is a real interval.
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Tensor Exponential Function
Given a function g : R — R, the mapping result of a diagonal tensor by
the function g is to obtain another same size diagonal tensor with
diagonal entry mapped by the function g. Then, the function g can be
extended to allow a Hermitian tensor X € Chx = x/Imxhx-xlu 35 an input
argument as

g(X) ZUxp g(N) xm U, where X = U spg Ay UM, (9)
Definition 4
Given a square tensor X' € ChxxImxhx--xlu the tensor exponential of
the tensor X is defined as
oo
Xk
PTA wa
ray (10)
k=0

where X0 is defined as the identity tensor Z € Ch>*/Imxhx--xlu 3nd
Xk =X *M X *M kM X. INvENRELATION

k terms of X
Given a tensor ), the tensor X is said to be a tensor logarithm of Y if '.
e¥ =Y
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Tensor Moments and Cumulant
Suppose a random Hermitian tensor X’ having tensor moments of all orders,
i.e., E(X") existing for all n, we can define the tensor moment-generating
function, denoted as Mx(t), and the tensor cumulant-generating function,
denoted as Ky (t), for the tensor X as

def

Mx(l') =

def

Ee'*, and Kyx(t) = logEet* (11)

where t € R. Both the tensor moment-generating function and the tensor
cumulant-generating function can be expressed as power series expanstions:

Mx(t)_I—i-Z _E(X") and Kx(t Z _zpn, (12)

where 9, is called tensor cumulant. The tensor cumulant v, can be expressed
as a polyomial in terms of tensor moments up to the order n, for example,
the first cumulant is the mean and the second cumulant is the varaince:

1 =E(X), and 1 = E(X?) — (E(X))>. (13
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T-product Tensors, |
For a third order tensor C € C™*"*P we define bcirc operation to the tensor

C as:

c@® ¢k  cl-1 ... c®
c@ cm cP ... c®
beirc(C) = _ . : . ) (14)
c(.p) c(p-fl) c(p.f2) e c&l)
where C) ... C(P) € C™*" are frontal slices of tensor C. The inverse

operation of bcirc is denoted as bcirc™! with relation bcirc™*(bcirc(C)) £ C.
For a third order tensor C € C™*™*P we define Hermitian transpose of C,
denoted by CH , as

CM = beirc((bcirc(C))™). (15)

And a tensor D € C™*™*P js called a Hermitian T-product tensor if
DY = D. Similarly, we also define transpose of C, denoted by CT , as

NVENRELATION

C™ = bcirc*((bcirc(C))T).

16)
And a tensor D € C™*™*P s called a Symmetric T-product tensor if '.
DT =D.
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T-product Tensors, |l

The identity tensor Z,mp € C™*™*P can be defined as:
Lonmp = beirc™ (Inp), (17)

where 1, is the identity matrix in R™P*™P_ A zero tensor, denoted as

Omnp € C™*"*P s a tensor that all elements inside the tensor as 0.

In order to define the T-product operation, we need to define another kind of
operation over a third order tensor. For a third order tensor C € C™*"*P  we
define unfold operation to the tensor C as:

c
c®
unfold(C) £ ) ) (18)

c(.p)

where unfold(C) € C™P*", and the inverse operation of unfold is fold with

the relation fold(unfold(C)) = C. Given C € C™*"*P and D € C"™*k*P, we

define the T-product between C and D as [ENRELATIoN

C %D  fold(bcirc(C)unfold(D)), (19) '.

where Cx D € Cm™*kxp,
13/81



T-product Tensors, Il

We define the T-product tensor trace for a tensor C = (cjx) € C™*"*P,
denoted by Tr(C), as following

IE
Ms

P
Z Ciik » (20)
=1

which is the summation of all entries in f-diagonal components.
Given a tensor C € R™*"*P Theorem 4.1 in [KM11] proposed a T-singular
value decomposition (T-SVD) for C as:

i=1 k

C=UxrS*xVT, (21)

where U € C™*™*P and V € C"*"*P are orthogonal tensors, and

S € C™*"%P is a f-diagonal tensor. We also have UT x U = Zmmp and
VIxy = Znnp- We define o(C) be the spectrum of C, i.e., the set of s € C,
where s are nonzero entries from tensor S. We use ||-|| for the spectral norm,
which is the largest singular value of a T-product tensor.

Given any integer k and B € C™*™*P e define B¥ as

INVENRELATION

k terms of 3 under T-square

de ,—/%
Bk BxB+Bx---+B (22) '.

where BK € Cmxmxp,
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T-product Tensors, IV

Definition 5
Given a tensor X € C™*™M*P the tensor exponential of the tensor X is
defined as
o0
Xk
X def A
k=0

where X0 is defined as the identity tensor Zmmp- Given a tensor ), the tensor
X is said to be a tensor logarithm of Y if e¥ = .

From T-SVD in Eq. (21), we can express a Hermitian T-product tensor
C € RMXMXp 3¢

m p—1 T
C= Z SH'kUE'k] * (ngl) ) (24)

i=1 k=0

where s are eigenvalues of the tensor C, and ng] € C™*1XP is the i-th
lateral slice (matrix) of the tensor U after k cyclic permutations. The matrix

U[O] is obtained from the i-th lateral slice (matrix) of the tensor U with
(1 )

INVENRELATION

column vectors as u; ,uS"), then we have

UE_k] _ (uEerl—k) mod p7 fp+2 k) modp e Sp)7 El)/ . ugp—k)> ) (25) '.
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T-product Tensors, V
H H /
Note that we have (ngl) * UE.k] = Ty1p and (ng]) * Ugf(] = Oup for

i# i or k# k'. All values of sy are real and we define
def

def .
Amax = max {sik}, and Amin = min  {sj}.
1<i<m 1<i<m
0<k<p—1 0<k<p—1

Given a Hermitian T-product tensor C € C™*™*P and a tensor X € Cm™x1xp
obtained from treating the matrix X € C™*P as a tensor with dimensions
R™*1XP_We define following quadratic form with respect to the matrix X as

Fe(X) £ XTxCxx, (26)

and we say that a tensor C is T-positive definite (TPD) (or T-positive
semi-definite (TPSD)) if Fe(X) > 0 (or F¢(X) > 0 ) for any X € C™*P,
where 0 is a zero vector with size p.

INVENRELATION
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Laplace Transform Method for Tensors
Lemma 6 (Laplace Transform Method for Tensors)

Let X be a random Hermitian tensor. For € R, we have

. —0t tX
P(,\max(x)za)gggg{e ETre } (27)

Proof: Given a fix value t, we have

P(Amax(X) > 0) = P(Amax(tX) > t0)
— P(e)\max(t.)() > et@) < eftﬁ]Ee)\max(tX). (28)
The first equality uses the homogeneity of the maximum eigenvalue map, the

second equality comes from the monotonicity of the scalar exponential function,
and the last relation is Markov's inequality. Because we have

) =\ (V) < TretY, (29)

where the first equality used the spectral mapping theorem, and the inequality ..con
holds because the exponential of an Hermitian tensor is positive definite and the
maximum eigenvalue of a positive definite tensor is dominated by the

trace [LZ19]. From Eqgs (28) and (29), this lemma is established. '.
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Relative Entropy Between Tensors

Definition 7

Given two positive definite tensors A € Ch> *Iv and tensor

B e Chxxluxhx-xlu The relative entropy between tensors A and B is
defined as

Xy Xl x--

D(A || B) £ TrAxy (log A — log B). (30)

Lemma 8 (Joint Convexity of Relative Entropy for Tensors)

The relative entropy function of two positive-definite tensors is a jointly
convex function. That is

D(tA1 + (1 — t)Az || tB1 + (1 — t)BQ) <
tD(A; || B1) + (1 — t)D( Az || Br), (31)

where t € [0,1] and all the following four tensors Ay, B1, Az and Ba, are
positive definite. weenseuarion
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Theorem 9 (Lieb's concavity theorem for tensors)
Let H be a Hermitian tensor. Following map

A -5 TreM+log A (32)

is concave on the positive-definite cone.
Proof:

From Klein's inequality for the map t — tlog t (which is strictly concave for
t > 0) and Hermitian tensors X', J,we have

TrY > TrX — TrX log X + TrX log ). (33)
If we replace ) by e*t1°6A e then have

TreHHoeA = may {TrX *H —D(X || A)+ Tr?c'} (34)
X-0

where D(X || A) is the quantum relative entropy between two tensor
operators. For real number t € [0,1] and two positive-definite tensors
Az, Az, we have

o HAlog(tAr+(1—t)Az) . _ _ .
Tre = 2132; {TIXH D(X || tA + (1 — t)Ay) +T1X}

[\

£ max {TrXH —D(X || tA) + TIX}

+(1 - t) max {Tran - D | (1 - 042) + e}
= tTreMHoe A 4 (1 — ¢)TreMttos (35)
where the first and last equalities are obtained based on the variational '.
formula provided by Eq. (34), and the inequality is due to the joint convexity '
property of the relative entropy from Leamm 8. O
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Lemma 10 (Subadditivity of Tensor CGFs)

Given a finite sequence of independent Hermitian random tensors {X;}, we
have

ETrexp (Z tX) < Trexp (Z Iog]Ee”')) , forteR. (36)

i=1 i

Proof: We first define the following term for the tensor cumulant-generating
function for X; as:

Ki(t) 2 log(Ee'™). 37)

Then, we define the Hermitian tensor Hy as

Hy (t): th+ Z K;( (38)

i=k+1

HM*

By applying Eq. (38) to Theorem 9 repeatedly for k =1,2,---, n, we have

n n-1
ETrexp (Z t.x\.’,-) =1 Eo---E,—1Trexp (Z tX; + tXn>

i=1 i=1

-1
< Eo---E, oTrexp (Z tX; + log (]E,,,lew")>

i=1

n—2
= Ep---E, Trexp (Z X+ tX 1 +]K,,(t).>
i=1

n—2
< Eo--EpsTrexp (Z £ + Kpq () + K"(t)>

< Trexp (i K;(t)) (39)
i—1

where the equality =; is based on the law of total expectation by defining E;
as the conditional expectation given Xy, -+, Aj.

INVENRELATION
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Theorem 11 (Master Tail Bound for Independent Sum of Random
Tensors)

Given a finite sequence of independent Hermitian random tensors {X;}, we have
Pr ()\max(iz_; X)) > 0) < g]; e ¥ Trexp (; IogIEetX") } (40)

Proof: By substituing the Lemma 10 into the Laplace transform bound provided
by the Lemma 6, this theorem is established. |

INVENRELATION
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Corollaries for Master Tail Bound for Independent Sum of

Random Tensors
Corollary 12

Given a finite sequence of independent Hermitian random tensors { X;} with
dimensions in Ch>>uxhx-xlu " if there is a function f : (0,00) — [0,00] and a
sequence of non-random Hermitian tensors {A;} with following condition:

f(t)A; = logEe'Y, fort > 0. (41)

Then, for all 6 € R, we have

Pr (Amax (Z’G>>9> < I inf {exp
i=1

—t0 + £(6) Amax <Z A,—)} (42)

Corollary 13

Given a finite sequence of independent Hermitian random tensors {X;} with
dimensions in Ch>xImxhx-xlu For o/l § € R, we have

S Retdi

n
Pr </\ma>< (Z X,-) > 0> < t|21(’) { exp | —t0 + nlog Amax %
i—1

INVENRELATION
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(«3) <
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Tensor with Gaussian and Rademacher Random Series,
Square Tensor

Lemma 14
Suppose that the tensor A is Hermitian. Given a Gaussian normal random
variable o« and a Rademacher random variable 3, then, we have

Ee®tA = e:ZAZ/z and ez2A2/2 - ]Ee/itA7 (44)

where t € R.

Theorem 15 (Hermitian Tensor with Gaussian and Rademacher
Series)

Given a finite sequence A; of fixed Hermitian tensors with dimensions as
Clxexhxhxxlu and Jet {a;} be a finite sequence of indepedent normal
variables. We define

def
o? =

) (45)

Y

then, for all § > 0, we have

Pr (Amx <Z a,v.A,v) > 9) <ifeir, (46)
i=1
P
%

Pr( > i za) < 20Mema. (47)

y “
This theorem is also valid for a finite sequence of independent Rademacher

random variables {c;}.

and
INVENRELATION
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Corollary 16 (Rectangular Tensor with Gaussian and Rademacher
Series)

Given a finite sequence A; of fixed Hermitian tensors with dimensions as
Choxexuxdix-xdu and let {a;} be a finite sequence of indepedent normal
then, for all @ > 0, we have

m=1

variables. We define
Pr (

o2 = max{ ZA;*MA,H
i=1
n M o2
> aiAi| > 9) < [T Um+ dm)e 22 (49)
i=1

Z A;LI *M A,‘
i=1

This corrollary is also valid for a finite sequence of independent Rademacher
random variables {a;}.

INVENRELATION
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Tensor Chernoff Bounds

Lemma 17
Given a random positive semifefinite tensor with Amax(X) < 1, then, for any
t € R, we have

T+ (et —1)EX = Eet*. (50)

Theorem 18 (Tensor Chernoff Bound I)

Consider a sequence {X; € CvX>xh>x-xlu} of independent, random,
Hermitian tensors that satisfy

X = O and Amax(X;) <1 almost surely. (51)

Define following two quantaties:

. 1< . 1¢
Timax = Amax (; Z EX/) and Tioin < Amin <; Z EX’) ’ (52)
i=1 i=1

then, we have following two inequalities:

I o
Pr <Amax (; Z?ﬂ-) > 9) <WWe @) for i, <0 <1, (53)
i=1

and

1 Z” _
o (Ami" (E ‘X") S 9) S Hyeinn(elwmm), for® S ’ S ﬁmi"' (54) “
i=1 |
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Proof of Tensor Chernoff Bound |

From Lemma 17, we have
T+ f(t)EX; = Ee'™, (55)

where f(t) < et — 1 for t > 0. By applying Corollary 13, we obtain

Pr <,\max <Z X) > (y) 1 exp <7m + n10g Amax (% Z (Z+ f(t)]EX,-)) >
i=1

i=1

1 n
1M exp <—ta + 1108 Amax <I +(t) ; ]EX,-))

1M exp (—ta + nlog (1 4 F(t)fimax)) - (56)

INA

The last equality follows from the definition of fi,,,, and the eigenvalue map
properties. When the value t at the right-hand side of Eq. (56) is

~ log - Hmax (57)

t =log
-« 1_/"ma><

we can achieve the tighest upper bound at Eq. (56). By substituing the value
t in Eq. (57) into Eq. (56) and change the varaible & — nf, Eq. (53) is
proved. The next goal is to prove Eq. (54).

If we apply Lemma 17 to the sequence {—X/}, we have

T — g(t)EX; = Eet—), (58) “

1—effort>0.

INVENRELATION

der

where g(t)
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Proof of Tensor Chernoff Bound |, cont.
By applying Corollary 13 again, we obtain

e e

M exp (ta + nlog Amax <1 i (- g(t)IEX,)))

- Wexp<ta+n|og(1—f mm< ZEX>>>

= 1Y exp(ta+ nlog (1 — g(t)fimin)) » (59)

IN
3

where we apply the relation Amin(— Z EX;) = —Amax(2 Z EX;) at the
equality =;. When the value t at the rlght hand side of Eq (59) is

t_/ogl“"f‘x floglfa, (60)

max

INVENRELATION

we can achieve the tighest upper bound at Eq. (59). By subst|tumg the value .
t in Eq. (60) into Eq. (59) and change the varaible o — n@, Eq. ( '

proved also.
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Tensor Bernstein Bounds

Lemma 19

Given a random Hermitian tensor X' € Ch>*M>xhx-xlu that satisfies:

EX =0 and Amax(X) <1 almost surely.
Then, we have
e(ek—r—l)]E(Xz) - Eet¥
where t > 0.

Theorem 20 (Bounded An.x Tensor Bernstein Bounds)

Given a finite sequence of independent Hermitian tensors
{X; € ChoeXh<hoxxiu} that satisfy

EX; =0 and Amax(X;) < T almost surely.

) . et
Define the total varaince o2 as: 0 <

SE (A7)

inequalities:

Pr A Zn:x. >0 <Mexp =2
™\ )T 02+ T0/3)"

n 32
Pr ()\max ( 2\.’;) > 6) <TMexp ( 3i ) for0 < o?/T;
P 80

i=

n
Pr (Am < ;\1) > e> <TMexp (;ira) for > o2/T.
1

i=

and

and

(61)

(62)

(63)

‘. Then, we have following

(64)

(65)

(66)

29/81
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Proof for Bounded \,,.x Tensor Bernstein Bounds

Without loss of generality, we can assume that T = 1 since the summands
are 1-homogeneous and the variance is 2-homogeneous. From Lemma 19, we
have

Eet® < e(¢'~t-DE(YY) for + > 0. (67)

By applying Corollary 12, we then have

Pr <)\max <i X,-) > 9) M exp <t€ +(e" — t — 1) Amax (iﬂi (X,2)>>
i=1

i=1
= Ifexp(—t0+o?(e' —t—1)). (68)
The right-hand side of Eq. (68) can be minimized by setting
t = log(1 + 0/0?). Substitute such t and simplify the right-hand side of
Eq. (68), we obtain Eq. (135).
For 0 < 0?/T, we have

IN

L > ! R (69)
02+ T0/3~ 024+ T(02/T)/3  40?’
then, we obtain Eq. (136). Correspondingly, for 6 > o2/ T, we have
2
T
A i -2 (70)
02+ T0/3 = 02+ T(02/T)/3 4T
then, we obtain Eq. (137) also. O

30/81
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Tensor Martingales

Necessary definitions about tensor martingales will be provied here for later
tensor martingale deviation bounds derivations. Let (2, F,P) be a master
probability space. Consider a filtration {§;} contained in the master sigma
algebra as:

FoCFCFHC ClxCT (71)
Given such a filtration, we define the conditional expectation E;[-] = E;[-|F/].
A sequence {);} of random tensors is called adapted to the filtration when
each tensor )); is measuable with respec to §;. We can think that an adapted
sequence is one where the present depends only on the past.
An adapted sequence {X;} of Hermitian tensors is named as a tensor
martingale when

E,_1Xi=X;_1 and E HX,H < 00, (72)

where i =1,2,3,---. We obtain a scalar martingale if we track any fixed
entry of a tensor martingale {X;}. Given a tensor martingale {X;}, we can
construct the following new sequence of tensors

ViEX - Xy fori=1,2,3,-- (73) '.

We then have E;_1); = O.

INVENRELATION
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Two Lemmas About Tensor Martingales

Lemma 21 (Tensor Symmetrization)

Let A be a fixed Hermitian tensor, and let X be a random Hermitian tensor
with EE = O. Then

ETreA*Y < ETreA+2A% (74)

where 3 is Rademacher random variable.

The other Lemma is to provide the tensor cumulant-generating function of a
symetrized random tensor.

Lemma 22 (Cumulant-Generating Function of Symetrized
Random tensor)

Given that X is a random Hermitian tensor and A is a fixed Hermitian tensor
that satisfies X2 < A2. Then, we have

log E [e2t¥|X] < 2242, (75)

INVENRELATION

“

32/81



Theorem 23 (Tensor Azuma Inequality)

Given a finite adapted sequence of Hermitian tensors
{&; € Chxxluxhx-xlu} and a fixed sequence of Hermitian tensors { A;}
that satisfy

E;,_1X; =0 and X? < A%almost surely, (76)

where i =1,2,3,---.

. . def
Define the total varaince o2 as: 0 =

> A

. Then, we have following

inequalities:

n 2
Pr <)\max (Z X,-) > 0) <IMe i (77)

i=1

INVENRELATION
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Proof of Tensor Azuma Inequality
Define the filtration §; & F(X1, -+, X;) for the process {X;}. Then, we have

n n—1
ETr exp (Z tX,-) E <E <Tr exp (Z tX; + tX,,) |gn) |gn_1)
i=1

i=1

n—1
< E <E <Tr exp (Z tX; + Q,BtXn> |3n> |3’n>
i=1
n—1
< E <Tr exp (Z tX; + logE (QZBtXnmn)) |3n>
i=1
n—1
< ETrexp (Z tX; + 2t2«4$,> ) (78)
i=1

where the first equality comes from the tower property of conditional
expectation; the first inequality comes from Lemma 21, and the relaxation
the conition to the larger algebra set §,; finally, the last inequality requires
Lemma 22.

INVENRELATION
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Proof of Tensor Azuma Inequality, cont.

If we continue the iteration procedure based on Eq. (78), we have

ETrexp (Z tX;) < Trexp <2t2 Z A,2> , (79)

i=1 i=1

then apply Eq. (79) into Lemma 6, we obtain

Pr ()\max (Z X,-) > 9> < inf {e Ty exp (Z t/'\.’,-) }
i1 i=1
e ETrexp (21‘2 ZA2> }
i=1

< inff

< infdeto 2 2 }

< O{e ]I1 max (exp (Qt ZA

i=1

= |nf {e exp 2t202) }

< Me K (80) e o
where the third inequality utilizes A\jnax to bound trace, the equality applies '.
the definition of o2 and spectral mapping theorem, finally, we select t = %
to minimize the upper bound to obtain this theorem. El
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Theorem 24 (Tensor McDiarmid Inequality)

Given a set of n independent random variables, i.e. {X;:i=1,2,---n}, and
let F be a Hermitian tensor-valued function that maps these n random
variables to a Hermitian tensor of dimension within Ch>>Xxhx-XIu
Consider a sequence of Hermitian tensors {A;} that satisfy

2
(F(x1, - Xy 3 Xn) — F(xt, -, X+ %)) jAI{ (81)
where x;, x] € Xj and 1 < i < n. Define the total varaince o2 as:

n
2 def 2
o = E_A,-.
1

Then, we have following inequality:

Pr (Amax (F(xt, -+ 2 x0) — EF(x1, -+, %p)) > 0) < IMe 507 (82)

INVENRELATION
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Motivation

Previous theory is based on the summation of independent random

tensors, how about the tail bouns for the function of random tensors
sum? We wish to consider the following problem:

m
Pr(|lg (> ]| >0] <somebounds ? (83)
=1
where || || is a tensor norm function. The answer is: Yes!.

But we need more tools:

» Unitarily Invariant Tensor Norms.
» Antisymmetric Tensor Product.
» Marorization.
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Unitarily Invariant Tensor Norms, |

Let us represent the Hermitian eigenvalues of a Hermitian tensor

H € ChxxInxhx-xIv in decreasing order by the vector

X(H) = (M(H), -, A\(H)), where r is the Hermitian rank of the tensor
H. We use R>o(Rx0) to represent a set of nonnegative (positive) real
numbers. Let ||| be a unitarily invariant tensor norm, i.e.,

[Hxn U, = U xnH|, = ||H]|,, where U is any unitary tensor. Let

p R, — R be the corresponding gauge function that satisfies
Hélder's inequality so that

171, = 171l = p(X(H1)), (84)

where [H| = \/HH xn H. The bijective correspondence between
symmetric gauge functions on RZ.
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Unitarily Invariant Tensor Norms, Il
Several popular norms can be treated as special cases of unitarily
invariant tensor norm. The first one is Ky Fan like k-norm [FH55] for
tensors. For k € {1,2,--- ,r}, the Ky Fan k-norm [FH55] for tensors
HCh <Xl denoted as [|H]) ), is defined as:

k
Il = D Ni(1HD (85)
i=1

If Kk =1, the Ky Fan k-norm for tensors is the tensor operator norm,
denoted as |H||. The second one is Schatten p-norm for tensors, denoted
as ||H|[, is defined as:

1, = (Te|#H[P)>, (86)

where p > 1. If p =1, it is the trace norm. The third one is k-trace
norm, denoted as Try[#], defined by [Hua20]. It is

NVENRELATION

Tri[H] £ )P YP VNP (87)

1< < <--ik<r '.
where 1 < k <r. If k =1, Tri[H] is reduced as trace norm.
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Unitarily Invariant Tensor Norms, Il

Following inequality is the extension of Holder inequality to gauge
function p which will be used by later to prove majorization relations.

Lemma 25
For n nonnegative real vectors with the dimension r, Le.,

b; = (by, -, b;,) € RSy, and a > 0 with Za,—l we have

i=1

(Hb Hb ,Hb,fff) < [T (o) (88)
i=1 i=1
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Antisymmetric Tensor Product, |

Let ) be a Hilbert space of dimension r, £($)) be the set of tensors
(linear operators) on $. Two tensors A, B € £($) issaid A > Bif A—B
is a nonnegative Hermitian tensor. For any k € {1,2,--- ,r}, let H®k be
the k-th tensor power of the space § and let H* be the antisymmetric
subspace of @K, We define function A¥ : £() — £(H"*) as mapping
any tensor A to the restriction of A% € £($®k) to the antisymmetric
subspace HNK of H®kK, Following lemma summarizes several useful
properties of such antisymmetric tensor products.
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Antisymmetric Tensor Product, Il

Lemma 26

Let A,B,C € Ch>-xInxhx-xIv pe tensors in £($), and

D € ChxXInxhx--xIy pa Hermijtian tensors from § with Hermitian rank
r. Forany k € {1,2,--- ,r}, we have

1. (AAk)H — (AH)/\k,.
2. (.A/\k) *N (BAk) = (.A *N B)/\k.
3. Uf lim |JA; — A|| = 0, then lim ||AM — AMK|| — 0.
1—> 00 1—> 00
4. IfC > O (zero tensor), then C"K > O and (CP)"k = (C"<)P for all
p € Ro.
AP = 4%,
6. If D> O and D is invertibale, (D*)"* = (D"¥)? for all z € D.

o

~

k
: HAMH = _1:[1)‘:‘(|A|)-
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Marorization, |
Let x = [x1, -, %] €ER",y =[y1, -, y,] € R" be two vectors with following
orders among entries x; > --- > x, and y; > --- > y,, weak majorization
between vectors x,y, represented by x <,, y, requires following relation for
vectors X, y:

k k
PEEDBZ (89)
i=1 i=1

where k € {1,2,---,r}. Majorization between vectors x,y, indicated by
x <y, requires following relation for vectors x, y:

K
>
i=1

r
D %
i=1

K
Zy,-, forl<k<r,
i=1

Zy,-, for k =r. (90)
i=1
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Marorization, |l
For x,y € Ry, such that x; > --- > x, and y; > --- > y,, weak log
majorization between vectors x, y, represented by x <, iog ¥, requires
following relation for vectors x,y:

k k
Hxi < Hyf7 (91)
i=1 i=1

where k € {1,2,--- . r}, and log majorization between vectors X, y,
represented by x <|og ¥, requires equality for k = r in Eq. (91). If f is a
single variable function, f(x) represents a vector of [f(x1), -, f(x)]
From Lemma 1 in [HKT17], we have

Lemma 27

(1) For any convex function f : [0,00) — [0, 00), if we have x <y, then
f(x) <w f(y).

(2) For any convex function and non-decreasing f : [0,00) — [0, c0), if we
have x <, y, then f(x) <, f(y).

INVENRELATION
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Marorization, |l

Another lemma is from Lemma 12 in [HKT17], we have

Lemma 28

Let x,y € Ry, such that x; > --- > x. and y1 > -+ >y, with X <j5g ¥.
Also let y; = [yia, -+, yir] € RS, be a sequence of vectors such that

Yi1r > -2y >0andy; -y asi— oco. Then, there exists iy € N and
Xj = [Xi1, -, Xir] € RY, for i > fg such that xj; > -+ > xi.y > 0,

X; = X asi— oo, and

Xj <log Yi fori>ip. (92)
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Majorization wtih Integral Average

Let 2 be a o-compact metric space and v a probability measure on the
Boreal o-field of Q. Let C, D, € Chx>*Inxhx--XIv he Hermitian tensors
with Hermitian rank r. We further assume that tensors C, D, are
uniformly bounded in their norm for 7 € Q. Let 7 € Q — D, be a
continuous function such that sup{||D.|| : 7 € Q} < co. For notational
convenience, we define the following relation:

{/Q M(Dr)dv(7),- - ,/Q)\r(DT)dV(T)} def/,)\(D Ydv (7). (93)

If f is a single variable function, the notation f(C) represents a tensor
function with respect to the tensor C.

Theorem 29
Let f : R — [0,00) be a non-decreasing convex function, we have
following two equivalent statements:

¢ <W/ N(D;)dv () < ||f(C / 1F(D-)l, dw(7), (04) =

where ||-|| , is the unitarily invariant norm defined in Eq. (84). '.
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Majorization wtih Integral Average, cont.

Next theorem will provide a stronger version of Theorem 29 by removing
weak majorization conditions.

Theorem 30
Let f : R — [0,00) be a convex function, we have following two
equivalent statements:

5©) < [ X0o)dvr(r) = 1), < [ 1FD], dutr). (99

where ||-|| , is the unitarily invariant norm defined in Eq. (84).
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Log-Majorization wtih Integral Average

Theorem 31

Let C, D, be nonnegative Hermitian tensors, f : (0,00) — [0, 00) be a
continous function such that the mapping x — log f(e*) is convex on R,
and g : (0,00) — [0,00) be a continous function such that the mapping
x — g(e¥) is convex on R, then we have following three equivalent

statements:
X(C) =w log exp/ |ogX(DT)dVr(7_); (96)
£, < eXp/QIong(DT)deV(T); (@7)
le(c / I8(D)l, dv(7). (08) v
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Log-Majorization wtih Integral Average, cont

Next theorem will extend Theorem 31 to non-weak version.

Theorem 32

Let C, D, be nonnegative Hermitian tensors with [, | D;P|| , dv(r) < oo
for any p > 0, f : (0,00) — [0, 00) be a continous function such that the
mapping x — log f(e*) is convex on R, and g : (0, 00) — [0,00) be a
continous function such that the mapping x — g(e*) is convex on R ,
then we have following three equivalent statements:

—

XC) <iog  exp /Q rIogX(DT)dV’(T); (99)

1), < exp /Q log | (D-)||, dv(7); (100)

INVENRELATION
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Multivaraite Tensor Norm Inequalities

Lemma 33 ( Lie-Trotter product formula for tensors)

Let m € N and (Lk)}_, be a finite sequence of bounded tensors with
dimensions L, € Chx xluxhx-Xlu then we have

nILn;o <Hexp(£nk)> = exp <Z£k> (102)
k=1
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Multivaraite Tensor Norm Inequalities, cont

Theorem 34
Let C;j € Chx-xInxhx-xIn pe posjtive Hermitian tensors for 1 < i < n with
Hermitian rank r, ||-||, be a unitarily invaraint norm with corresponding

gauge function p. For any continous function f : (0,00) — [0, 00) such that
x — log f(e*) is convex on R, we have

f (exp (ZIO&’;C;)) < exp/ log HC,”“
i=1 > i=1

P
where ﬁo(t) = 2(coshET7'rt)+1)'
For any continous function g(0,00) — [0, 00) such that x — g(e*) is convex

on R, we have
g <eXP <Z|0g0;>) < / g ( )
i=1 -

Bo(t)dt, (103)

p

; Bo(t)dt.(104)

p

1+t
ci
1

p i=
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Ky Fan k-norm Tail Bound

Lemma 35
Let C; € Chx-xInxhx--xIn \ith Hermitian rank r and let p; be positive real

m
numbers satisfying > % = 1. Then, we have
=1

wheres > 1 and k € {1,2,--- ,r}.

m s

[

i=1

m 1 m H|C’_|5Pf|

<TI(leil,)" < Wl (105)

(k) =1 i=1 pi

Lemma 36
Let C; € ChxxInxhxXIn \with Hermitian rank r, then we have

m s

S

i=1

<mTty 1C ]|y (106)
(k) =1

where s > 1 and k € {1,2,--- ,r}.
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Ky Fan k-norm Tail Bound, cont
Theorem 37

Consider a sequence {X; € Ch>-*Ivxhx-xIv} of independent, random,
Hermitian tensors. Let g be a polynomial function with degree n and
nonnegative coeffecients ag, a1, - - , ap raised by power s > 1, i.e.,

g(x) = (ap + arx + - - - + a,x")°. Suppose following condition is satisfied:

m m
exp | t Z &; =exp | tg Z &; almost surely,
— =

—

107)

where t > 0. Then, we have

Pr||g Z?C} >0 <
(k)

IE exp (pjlstX;
(n+ 1) Linfe % | ka; +Z | 1505l . (108)
1=1 j=

t,pj 1

m
where le% =1 and p; > 0. '.
=
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Ky Fan k-norm Tail Bound, proof

Let t > 0 be a parameter to be chosen later. Then

(&), )l L)
=(<(&))

Pr >0|=pr > exp (6t)

(k)

<j exp(—0t)E

(k)

m
<, exp(—0t)E | |lg (exp (tz XJ> ) (109)
= *
where <; uses Markov's inequality, <, requires condition provided by
Eq. (107).
We can further bound the expectation term in Eq. (108) as
m Ne's) m
E||g|exp tZXj §3E/ g He(1+rr)tX, Bo(r)dr
= *) B AU *)
Is
n 0 m INVENRELATION
<o (n+1)77 | kag+ > afE / [ e Bo(r)dr |, (110) =
=1 —|]j=1
where <3 from Eq. (104) in Theorem 34, <, is obtained from function g .

definition and Lemma 36.
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Ky Fan k-norm Tail Bound, proof, cont.
Again, the expectation term in Eq. (110) can be further bounded by
Lemma 35 as

Is H‘etx|pjls

IE/OO ﬁe(l'”'”)txf Bo(T)dr < /

—oo |||i2
(k)

L Wgi(r)dr

A

m g ep/lstX/
_ Z H ||(k) (111)
j=1 Pi
Note that the final equality is obtained due to that the integrand is
indepedent of the variable 7 and fix;o Bo(T)dT =1.
Finally, this theorem is established from Egs. (109), (110), and (111). O
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Theorem 38 (Generalized Tensor Chernoff Bound)

Consider a sequence {X; € Ch>xInxhx-xIv} of jndependent, random,
Hermitian tensors. Let g be a polynomial function with degree n and
nonnegative coeffecients ag, ay, - - - ,a, raised by power s > 1, i.e.,

g(x) = (ao + aix + - - + a,x")° with s > 1. Suppose following condition is

satisfied:
m m
g | exp tZX/ =exp | tg Z X almost surely, (112)
j=1 j=1
where t > 0. Moreover, we require
Xi = O and Amax(X;) <R almost surely. (113)
Then we have following inequality:
m
Pr| g ;XJ >0 < (n+1)5*1ti21;e’9t~

(k)

n m Is
kag+3 3 % [1 + (™Rt 1) 0y (&) + C (e™Rt — 1) E(Xj)] (114)
=1 j=1

where 71(7) {Ul (9‘/2"/’) tor (*;“)}
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Theorem 39 (Generalized Tensor Bernstein Bound)

Consider a sequence {X; € C’lx“‘x’“x’lx'“x’“} of independent, random,
Hermitian tensors. Let g be a polynomial function with degree n and
nonnegative coeffecients ag, a1, - - , a, raised by powers > 1, i.e.,

g(x) = (ao + a1x + - - - + a,x")° with s > 1. Suppose following condition is
satisfied:

exp | t Z X =exp | tg Z X almost surely, (115)
‘ =i

where t > 0, and we also have

1A2
sz almost surely for p =2,3,4,---. (116)
Then we have following inequality:
m
L > < s—1: -0ty .
Pr| |lg ZXJ >0 <(n+1) gge k

(k)

m(/st)2(71 (A?) 7

aOJrZZ Is | = lt)+/5tCT(-X}'):| . (117) '.

=1 j=1
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Another Direction of Concentration Bounds

Another direction to extend from the basic Chernoff bound is to consider
non-independent assumptions for random variables. By Gillman [Gil98], they
changed the independence assumption to Markov dependence and we
summarize their works as follows. We are given & as a regular A-expander
graph with vertex set ¥, and g : 0 — C as a bounded function. Suppose

Vi, Vs -+, V, is a stationary random walk of length x on &, it is shown that:
1 K
Pr(||=> g(vi)—Elgl| =9 | <2exp(—Q(1 - \)r?). (118)
K
j=1

The value of A is also the second largest eigenvalue of the transition matrix
of the underlying graph &. The bound given in Eq. (118) is named as
“Expander Chernoff Bound"”.
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Expectation Estimation for Product of Tensors, |
Let A be the normalized adjacency matrix of the underlying graph & and let
A = A ® I(ymy., where the identity tensor Zmy. has dimensions as
12 % oo x U2 x 12 x - x 2. We use F € Qg (mxf i) g
represent block diagonal tensor valued matrix where the v-th diagonal block
is the tensor

T = exp (W)  exp (W) , (119)
The tensor F can also be expressed as
T, O - O
o 7T, -+ O
F = . S . (120)
o o - T,

~\ K
Then the tensor (}-*M+1 A) is a block tensor valued matrix whose
(u, v)-block is a tensor with dimensions as 2 x -+ x [Z X [Z x -+ x [}
expressed as :

INVENRELATION
K—2
§ Au,vl H AVj,Vj+1 Av,cfl,v (77.1 *oM 7—\/1 *KoM KoM 77/“1) (121) “
Vi Va1 €T j=1
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Expectation Estimation for Product of Tensors, |l
Let ug € C™IXxIu be the tensor obtained by \% ® col(Zy), where 1 is

. . 2v... 2 .
the all ones vector with size n and col(Z) € Ch>xIu*1 s the column

tensor of the identity tensor Zyu € Ch>>mxhxxlu By applying the
following relation:

(col(Zyy),C @ B xm col(Tyn)) = Tr (CHm BT), (122)

where C, B € Ch>xmxhx-XIu- \we will have following expectation of &
steps transition of Hermitian tensors from the vertex v; to the vertex v,

= <U()7 (]: *M+1 A) *M4+1 UO>(123)

E

=E

<coI(ZW), H Ty, *m coI(IW)>

i=1
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Expectation Estimation for Product of Tensors, Il
If we define (]—' * M1 A) *M+1 Up as Uy, the goal of this section is to
estimate (ug, uy, ).
The trick is to separate the space of u as the subspace spanned by the (I})?
tensors 1 ® e; denoted by ull, where 1 < i < (IM)2 and g € CH*xlix1 js
the column tensor of size (I/)2 with 1 in position i and 0 elsewhere, and its
orthogonal complement space, denoted by ut. Following lemma is required
to bound how the tensor norm is changed in terms of aforementioned

subspace and its orthogonal space after acting by the tensor F *op111 A. We
require two lemmas.
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Expectation Estimation for Product of Tensors, IV

Lemma 40

Given paramters A € (0,1), a>0,r >0, andt > 0. Let & = (U, €) be a
regular A\-expander graph on the vetices set U and |g(v;)|| < r for all v; € T.
Each vertex v € U will be assigned a tensor T, where

T, g(V)(;ﬂb) ®IH?” +IW ® g(V)(;—Lb) € CRx-XIyxIEx-xly | ot

2 2 2 2
F e Cmeemclig)x(mxiiscxiy) ¢ represent block diagonal tensor valued
matrix where the v-th diagonal block is the tensor exp(tT,) = T,. For any
tensor u € CP¥<xIy e have

~ I
1. (.F *M4-1 A *M+1 u”)

- I

2. (.7: *M4-1 A *M+1 UJ‘>
Y2 = Aexp(trv/a2 + b?)
. 1

(-7'— *M41 Axnpr U”)

Fxp+1 Axpqr UL)

. ’ <y HuJ-H where v, = Xexp(trv/a? + b?).

< 71 ||ull]|, where v1 = exp(trva® + b?);

<7 HuLH where

—1);

<7 HuH ”, where v3 = exp(trv/a? + b2) — 1;
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Expectation Estimation for Product of Tensors, V

In the following, we will apply Lemma 40 to bound the following term
provided by Eq. (123)

N\ K
<U0, (F *M+1 A) *M+1 U0> (124)

This bound is formulated by the following Lemma 41

Lemma 41
Let & be a regular A-expander graph on the vertex set °5,

g W — Chxxuxhx-xlu and et vi,--- v, be a stationary random walk
on &. If trv/a? + b> < 1 and A(2exp(trva®> + b%) — 1) < 1, we have:

(Hex (rg(v, (aﬂb)) » Hp (tg(w)(;— w)))] .

16trv/a? + b2
]I’lwexp[/i<2tr\/a2+b2+18)\+ 6r1j>\+ >

(125)
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Theorem 42 (Tensor Expander Chernoff Bound)

Let & = (T, €) be a regular undirected graph whose transition matrix has second
eigenvalue \, and let g : 0 —¢€ ChXxImxhx-xlu pe 5 function. We assume
following:

1. For each v € U, g(v) is a Hermitian tensor;

2 gl < r:

3. A nonnegative coefficients polynomial raised by the power s > 1 as
fix— (ap+ aix + axx® + - -- 4+ a,x")* satisfying

f <exp <t ﬁ%g(\g))) > exp (tf (ig(\g))) almost surely;

2
C =T
4. For T € [00, 0], we have constants C and o such that o(7) < Covlar),

oV22m
Then, we have
Pr|||f Zg(vj) >9| <
= (")

min [(n+ 1) Ve ™t | agk + C [ k + -k,

>0 0 k

> arexp(8kA + 2(k + 8X)lsrt + 2(o (s + 8/\)lsr)2t2)>} , (126)

=1
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Tail Bounds for T-product Tensors

» Aforementioned methods or non-indepedent for tensors under
Einstein product can also be considered again for tensors under
T-product tensors. Works details about tail bounds for tensors under
Einstein product can be found [CL, Cha2la, Cha2lc].

» The T-product has been shown as a powerful tool in many fields:
signal processing, machine learning, computer vision, image
processing, low-rank tensor approximation,etc, see [CW21b, CW21c]
and references therein. We will show some results about those
bounds for T-product tensors, more details can be found
at [CW21b, CW21c, Cha2lb, CW21a]
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T-product Tensor with Concavity Approach, |

Theorem 43 (Hermitian T-product Tensor with Gaussian and

Rademacher Series Eigenvalue Version)

Given a finite sequence of fixed T-product tensors A; € C™*™*P and let
{a;} be a finite sequence of independent standard normal variables. We

define

2wt
UGR -

>4

then, for all 0 > 0, we have

n 2
Pr </\max (Z oe,-A,-) > 9) < mpe *7%r. (128)
i=1

We use || X|| for the spectral norm, which is the largest singular value for

the T-product tensor X. Then, we have

Pr ( En:oz,'A,'

i=1
This theorem is also valid for a finite sequence of independent
Rademacher random variables {c;}.

, (127)

_ 2
> 9) < 2mpe *7tr. (129)

INVENRELATION
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T-product Tensor with Concavity Approach, Il
Theorem 44 (T-product Tensor Chernoff Bound I)

Consider a sequence {X; € C™*™*P} of independent, random, Hermitian
T-product tensors that satisfy

Xi = O and Anax(X;) <1  almost surely. (130)

Define following two quantaties:

o 1 o 1<
= Amax | — E EX; d Tin = Amin | — E EX; |, 131
Hmax <n i=1 ) 7 ! (n i=1 > ( )

then, we have following two inequalities:
1 n
Pr ()\max < > X,-) > 9) < mpe~ ™0l forp <6< 1(132)
n
i=1

and

INVENRELATION

1< B
p min | = Xi| < < —m0l|Emn) £ <0<z (1
r()\ (,,Z; )_9)_mpe , for0 <0 <7, (133) “
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T-product Tensor with Concavity Approach, Il

Theorem 45 (T-product Tensor Bernstein Bounds with
Bounded Aax)

Given a finite sequence of independent Hermitian T-product tensors
{X; € Cm*m*P} that satisfy

EX; =0 and Amax(X;) < T almost surely. (134)

2 . Then, we have

SE (42)

i

. . def
Define the total varaince o2 as: 02 =

following inequalities:

Pr (Amax (Z X;) > 9> < mpexp (%) ; (135)

i=1

and
. —302
Pr <Amax (Zl X,-> > 0) < mpexp( 87 ) for0 <o?/T; (136)
and INVENRELATION

Pr <Amax< X;) > 0) < mpexp (;—ig) for6 > o?/T. (137) “
i=1 i
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T-product Tensor with Concavity Approach, IV

Theorem 46 (T-product Tensor Azuma Inequality for
Eigenvalue)

Given a finite adapted sequence of Hermitian tensors {X; € C™*m*P}
and a fixed sequence of Hermitian T-product tensors {A;} that satisfy

E;_1X; =0 and X7 < A? almost surely, (138)
where i =1,2,3,---.
n
Define the total varaince o® as: 0> = ||>" A2||. Then, we have following

inequalities:

n 2
Pr <)\max (Z X,-) > 9) < mpe 7. (139)

i=1
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Generalized T-product Tensor Chernoff Bounds
Theorem 47 (Generalized T-product Tensor Chernoff Bound)

Consider a sequence {X; € (C'"/X’"'X”} of independent, random,
Hermitian tensors. Let g be a polynomial function with degree n and
nonnegative coefficients ag, ai, . . ., a, raised by power s > 1, i.e.,
g(x) = (a0 + a1x + - - - + ap,x")* with s > 1. Suppose the following
condition is satisfied:

g (exp (tz.?\j)) > exp (tg (Z 2(})) almost surely,  (140)
j=1 j=1

where t > 0. Moreover, we require
X; > O and Amax(X;) <R  almost surely. (141)
Then we have the following inequality:

m

Prlle (>4 >0 | <(n+1)Linfe .
= w t>0
s ot kafs m{sRt PEEVAY mlsRt = INVENRELATION
EEDI) Pl [1 (R — 1) o1 (3] + € (™R — 1) =(xy)] ¢ (142) it
=1 j=1

where gl(_X}) &ef {0-1 (‘X/;X/*) + o1 (‘%7')(/*>:| “

2
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Generalized T-product Tensor Bernstein Bounds

Theorem 48 (Generalized T-product Tensor Bernstein Bound)

Consider a sequence {X; € (C’"’X””X"} of independent, random,
Hermitian tensors. Let g be a polynomial function with degree n and
nonnegative coefficients ag, a1, .. ., a, raised by power s > 1, i.e.,
g(x) = (ap + aix + - - - + a,x")° with s > 1. Suppose the following
condition is satisfied:

m m
exp |t Z X; >exp | tg Z X almost surely, (143)

j=1
where t > 0, and we also have
plA?
EX; =0 and X! < T’ almost surely for p=2,3,4,.... (144)

Then we have the following inequality:

Pr| g Z/’Y} >0 S(n+1)s_1igge_0tk-
(k)
m(lst)?o1(A7)
30+ZZa P ﬂ+/stCT()€j) . (145)

(=1 j=1

where C is a constant and T(X;) is determined from the expectation of
entries from the tensor X;.
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T-product Tensor Expander Chernoff Bound

Theorem 49 (T-product Tensor Expander Chernoff Bound)

Let & = (T, €) be a regular undirected graph whose transition matrix
has second eigenvalue \, and let g : 0 — R™*™*P be a function. We
assume following:

1. A nonnegative coefficients polynomial raised by the power s > 1 as
fix— (a+ aix + axx? + - -+ + a,x")* satisfying

K K
f <e><p (t ) g(\q))) = exp (tf (Z g(v,-)>> almost surely;
j=1 j=1
2. For each v € U, g(v) is a symmetric T-product tensor with
K
f (Z g(vj) | as TPD T-product tensor;
j=1

3. lleMl < r;
4. For T € [00, 0], we have constants C and o such that
2
ﬁo(T) < ﬁ exp (%)

Then, we have

Pr f(zg(w)) >4 <
= (k)

min {(n 1) DVt
t>0

ki (mp+ /M) ,

k INVENRELATION
Z arexp (8kX + 2(k + 8X)Isrt + 2(o(r + 8\)Isr)? t2):| } , (146) “
=1
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Conclusions and future works

» We established tail bounds for random tensors under situations with
independent sum, dependent sum, and function of sum (Einstein
product and T-product).

» Three main techniques used here are trace concavity method,
majorization approach, and Markov chain embedding.

» Tightness of these bounds.

v

Non-linear form.

» Applications to numerical computations, data science, etc.
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Questions?
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Thank you very much!
Please email shihyu.chang@sjsu.edu for any further
question.
Shih Yu Chang
Department of Applied Data Science
San Jose State University, USA
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