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Tail Bounds for Random Variables
In probability theory, tail bounds (concentration inequalities) provide bounds on
how a random variable deviates from some value, e.g., its expected value. The
law of large numbers of classical probability theory states that sums of
independent random variables are, close to their expectation with a large
probability. Common tail bounds are:

Theorem 1 (Bernstein Bound for RVs)
Let X1,X2, . . . ,Xn be independent Bernoulli random variables taking values +1
and −1 with probability 1/2 (this distribution is also known as the Rademacher
distribution), and θ be a given positive real number, then we have

Pr

(∣∣∣∣∣1n
n∑

i=1

Xi

∣∣∣∣∣ > θ

)
≤ 2 exp

(
− nθ2

2 + 2θ/3

)
. (1)
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Theorem 2 (Chernoff Bound for RVs)
Let X1,X2, . . . ,Xn be independent random variables taking values {0, 1} with

X =
n∑

i=1

Xi , and µ = EX, then we have

Pr (X > (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

, (2)

where δ > 0.

How about tail bounds for random matrices? We have to summarize a random
matrix by a scaler value, e.g., the maximum eigenvalue, matrix norm, etc, before
comparing to a real number. For example, we have following theorem about
Matrix Chernoff bound, it is [Tro12]

Theorem 3 (Chernoff Bound for Random Matrices)
Consider a finite sequence Xi of independent, random, Hermitian matrices with
dimension m. Suppose we have Xi ≥ 0 and λmax (Xi ) ≤ R almost surely, we then
have

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ (1 + δ)µmax

)
≤ m

[
eδ

(1 + δ)(1+δ)

]µmax
R

, (3)

where µmax = λmax

(
n∑

i=1

EXi

)
.

4 / 81



Applications of Tail Bounds

Tail bounds for random variables or random matrices have already found
a place in many areas of the mathematical sciences, including [Tro19]

▶ numerical linear algebra

▶ combinatorics

▶ algorithms analysis

▶ optimization

▶ quantum information

▶ statistics

▶ signal processing

▶ machine learning

▶ uncertainty quantification
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Why Tail Bounds for Random Tensors

▶ In recent years, tensors have been applied to deal with
multirelational data in science and engineering which is crucial in
current Big Data era.

▶ Very few works about tail bounds for random tensors.

▶ Unlike scalers or matrices, there are different ways to define the
product between two tensors. We will discuss tensors under Einstein
product and T-product.
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Tensor Basic Facts Under Einstein Product

The Einstein product (or simply referred to as tensor product in this
work) X ⋆N Y ∈ CI1×···×IM×K1×···×KL is given by

(X ⋆N Y)i1,··· ,iM ,k1,··· ,kL
def
=∑

j1,··· ,jN

ai1,··· ,iM ,j1,··· ,jNbj1,··· ,jN ,k1,··· ,kL . (4)

We also list other crucial tensor operations here. The trace of a square
tensor is equivalent to the summation of all diagonal entries such that

Tr(X )
def
=

∑
1≤ij≤Ij , j∈[M]

Xi1,··· ,iM ,i1,··· ,iM . (5)

The inner product of two tensors X , Y ∈ CI1×···×IM×J1×···×JN is given by

⟨X ,Y⟩ def
= Tr

(
XH ⋆M Y

)
. (6)
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Tensor Functions
Given a function g : R → R, the mapping result of a diagonal tensor by the
function g is to obtain another same size diagonal tensor with diagonal entry
mapped by the function g . Then, the function g can be extended to allow a
Hermitian tensor X ∈ CI1×···×IM×I1×···×IM as an input argument as

g(X )
def
= U ⋆M g(Λ) ⋆M UH , where X = U ⋆M Λ ⋆M UH . (7)

The spectral mapping theorem asserts that each eigenvale of g(X ) is equal
to g(λ) for some eigenvalue λ of X . From the semidefinite ordering of
tensors, we also have

f (x) ≥ g(x), for x ∈ [a, b] ⇒ f (X ) ≥ g(X ), for eigenvalues of X ∈ [a, b]; (8)

where [a, b] is a real interval.
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Tensor Exponential Function
Given a function g : R → R, the mapping result of a diagonal tensor by
the function g is to obtain another same size diagonal tensor with
diagonal entry mapped by the function g . Then, the function g can be
extended to allow a Hermitian tensor X ∈ CI1×···×IM×I1×···×IM as an input
argument as

g(X )
def
= U ⋆M g(Λ) ⋆M UH , where X = U ⋆M Λ ⋆M UH . (9)

Definition 4
Given a square tensor X ∈ CI1×···×IM×I1×···×IM , the tensor exponential of
the tensor X is defined as

eX
def
=

∞∑
k=0

X k

k!
, (10)

where X 0 is defined as the identity tensor I ∈ CI1×···×IM×I1×···×IM and
X k = X ⋆M X ⋆M · · · ⋆M X︸ ︷︷ ︸

k terms of X

.

Given a tensor Y, the tensor X is said to be a tensor logarithm of Y if
eX = Y
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Tensor Moments and Cumulant
Suppose a random Hermitian tensor X having tensor moments of all orders,
i.e., E(X n) existing for all n, we can define the tensor moment-generating
function, denoted as MX (t), and the tensor cumulant-generating function,
denoted as KX (t), for the tensor X as

MX (t)
def
= EetX , and KX (t)

def
= logEetX , (11)

where t ∈ R. Both the tensor moment-generating function and the tensor
cumulant-generating function can be expressed as power series expanstions:

MX (t) = I +
∞∑
n=1

tn

n!
E(X n), and KX (t) =

∞∑
n=1

tn

n!
ψn, (12)

where ψn is called tensor cumulant. The tensor cumulant ψn can be expressed
as a polyomial in terms of tensor moments up to the order n, for example,
the first cumulant is the mean and the second cumulant is the varaince:

ψ1 = E(X ), and ψ2 = E(X 2)− (E(X ))2. (13)
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T-product Tensors, I
For a third order tensor C ∈ Cm×n×p, we define bcirc operation to the tensor
C as:

bcirc(C) def
=


C(1) C(p) C(p−1) · · · C(2)

C(2) C(1) C(p) · · · C(3)

...
...

... · · ·
...

C(p) C(p−1) C(p−2) · · · C(1)

 , (14)

where C(1), · · · ,C(p) ∈ Cm×n are frontal slices of tensor C. The inverse

operation of bcirc is denoted as bcirc−1 with relation bcirc−1(bcirc(C)) def
= C.

For a third order tensor C ∈ Cm×m×p, we define Hermitian transpose of C,
denoted by CH , as

CH = bcirc−1((bcirc(C))H). (15)

And a tensor D ∈ Cm×m×p is called a Hermitian T-product tensor if
DH = D. Similarly, we also define transpose of C, denoted by CT , as

CT = bcirc−1((bcirc(C))T). (16)

And a tensor D ∈ Cm×m×p is called a Symmetric T-product tensor if
DT = D.
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T-product Tensors, II
The identity tensor Immp ∈ Cm×m×p can be defined as:

Immp = bcirc−1(Imp), (17)

where Imp is the identity matrix in Rmp×mp. A zero tensor, denoted as
Omnp ∈ Cm×n×p, is a tensor that all elements inside the tensor as 0.
In order to define the T-product operation, we need to define another kind of
operation over a third order tensor. For a third order tensor C ∈ Cm×n×p, we
define unfold operation to the tensor C as:

unfold(C) def
=


C(1)

C(2)

...
C(p)

 , (18)

where unfold(C) ∈ Cmp×n, and the inverse operation of unfold is fold with

the relation fold(unfold(C)) def
= C. Given C ∈ Cm×n×p and D ∈ Cn×k×p, we

define the T-product between C and D as

C ⋆D def
= fold(bcirc(C)unfold(D)), (19)

where C ⋆D ∈ Cm×k×p.
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T-product Tensors, III
We define the T-product tensor trace for a tensor C = (cijk) ∈ Cm×m×p,
denoted by Tr(C), as following

Tr(C) def
=

m∑
i=1

p∑
k=1

ciik , (20)

which is the summation of all entries in f-diagonal components.
Given a tensor C ∈ Rm×n×p, Theorem 4.1 in [KM11] proposed a T-singular
value decomposition (T-SVD) for C as:

C = U ⋆ S ⋆ VT, (21)

where U ∈ Cm×m×p and V ∈ Cn×n×p are orthogonal tensors, and
S ∈ Cm×n×p is a f-diagonal tensor. We also have UT ⋆ U = Immp and
VT ⋆ V = Innp. We define σ(C) be the spectrum of C, i.e., the set of s ∈ C,
where s are nonzero entries from tensor S. We use ∥·∥ for the spectral norm,
which is the largest singular value of a T-product tensor.
Given any integer k and B ∈ Cm×m×p, we define Bk as

Bk def
=

k terms of B under T-square︷ ︸︸ ︷
B ⋆ B ⋆ B ⋆ · · · ⋆ B (22)

where Bk ∈ Cm×m×p.
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T-product Tensors, IV
Definition 5
Given a tensor X ∈ Cm×m×p, the tensor exponential of the tensor X is
defined as

eX
def
=

∞∑
k=0

X k

k!
, (23)

where X 0 is defined as the identity tensor Immp. Given a tensor Y, the tensor
X is said to be a tensor logarithm of Y if eX = Y.

From T-SVD in Eq. (21), we can express a Hermitian T-product tensor
C ∈ Rm×m×p as

C =
m∑
i=1

p−1∑
k=0

siikU
[k]
i ⋆

(
U

[k]
i

)T
, (24)

where siik are eigenvalues of the tensor C, and U
[k]
i ∈ Cm×1×p is the i-th

lateral slice (matrix) of the tensor U after k cyclic permutations. The matrix

U
[0]
i is obtained from the i-th lateral slice (matrix) of the tensor U with

column vectors as u
(1)
i , · · · ,u(p)i , then we have

U
[k]
i =

(
u
(p+1−k) mod p
i ,u

(p+2−k) mod p
i , · · · ,u(p)i ,u

(1)
i , · · ·u(p−k)

i

)
. (25)
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T-product Tensors, V
Note that we have

(
U

[k]
i

)H
⋆U

[k]
i = I11p and

(
U

[k]
i

)H
⋆U

[k′]
i ′ = O11p for

i ̸= i ′ or k ̸= k ′. All values of siik are real and we define

λmax
def
= max

1≤i≤m
0≤k≤p−1

{siik}, and λmin
def
= min

1≤i≤m
0≤k≤p−1

{siik}.

Given a Hermitian T-product tensor C ∈ Cm×m×p, and a tensor X ∈ Cm×1×p

obtained from treating the matrix X ∈ Cm×p as a tensor with dimensions
Rm×1×p. We define following quadratic form with respect to the matrix X as

FC(X)
def
= XT ⋆ C ⋆ X , (26)

and we say that a tensor C is T-positive definite (TPD) (or T-positive
semi-definite (TPSD)) if FC(X) > 0 (or FC(X) ≥ 0 ) for any X ∈ Cm×p,
where 0 is a zero vector with size p.
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Laplace Transform Method for Tensors
Lemma 6 (Laplace Transform Method for Tensors)
Let X be a random Hermitian tensor. For θ ∈ R, we have

P(λmax(X ) ≥ θ) ≤ inf
t>0

{
e−θtETretX

}
(27)

Proof: Given a fix value t, we have

P(λmax(X ) ≥ θ) = P(λmax(tX ) ≥ tθ)

= P(eλmax(tX ) ≥ etθ) ≤ e−tθEeλmax(tX ). (28)

The first equality uses the homogeneity of the maximum eigenvalue map, the
second equality comes from the monotonicity of the scalar exponential function,
and the last relation is Markov’s inequality. Because we have

eλmax(tY) = λmax(e
tY) ≤ TretY , (29)

where the first equality used the spectral mapping theorem, and the inequality
holds because the exponential of an Hermitian tensor is positive definite and the
maximum eigenvalue of a positive definite tensor is dominated by the
trace [LZ19]. From Eqs (28) and (29), this lemma is established. □
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Relative Entropy Between Tensors

Definition 7
Given two positive definite tensors A ∈ CI1×···×IM×I1×···×IM and tensor
B ∈ CI1×···×IM×I1×···×IM . The relative entropy between tensors A and B is
defined as

D(A ∥ B) def
= TrA ⋆M (logA− logB). (30)

Lemma 8 (Joint Convexity of Relative Entropy for Tensors)
The relative entropy function of two positive-definite tensors is a jointly
convex function. That is

D(tA1 + (1− t)A2 ∥ tB1 + (1− t)B2) ≤
tD(A1 ∥ B1) + (1− t)D(A2 ∥ B2), (31)

where t ∈ [0, 1] and all the following four tensors A1, B1, A2 and B2, are
positive definite.
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Theorem 9 (Lieb’s concavity theorem for tensors)
Let H be a Hermitian tensor. Following map

A → TreH+logA (32)

is concave on the positive-definite cone.

Proof:
From Klein’s inequality for the map t → t log t (which is strictly concave for
t > 0) and Hermitian tensors X ,Y,we have

TrY ≥ TrX − TrX logX + TrX logY. (33)

If we replace Y by eH+logA, we then have

TreH+logA = max
X≻O

{
TrX ⋆H− D(X ∥ A) + TrX

}
(34)

where D(X ∥ A) is the quantum relative entropy between two tensor
operators. For real number t ∈ [0, 1] and two positive-definite tensors
A1,A2, we have

TreH+log(tA1+(1−t)A2) = max
X≻O

{
TrXH− D(X ∥ tA1 + (1− t)A2) + TrX

}
≥ t max

X≻O

{
TrXH− D(X ∥ tA1) + TrX

}
+(1− t) max

X≻O

{
TrXH− D(X ∥ (1− t)A2) + TrX

}
= tTreH+logA1 + (1− t)TreH+logA2 , (35)

where the first and last equalities are obtained based on the variational
formula provided by Eq. (34), and the inequality is due to the joint convexity
property of the relative entropy from Leamm 8. □
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Lemma 10 (Subadditivity of Tensor CGFs)
Given a finite sequence of independent Hermitian random tensors {Xi}, we
have

ETr exp

(
n∑

i=1

tXi

)
≤ Tr exp

(
n∑
i

logEetXi

)
, for t ∈ R. (36)

Proof: We first define the following term for the tensor cumulant-generating
function for Xi as:

Ki (t)
def
= log(EetXi ). (37)

Then, we define the Hermitian tensor Hk as

Hk(t) =
k−1∑
i=1

tXk +
n∑

i=k+1

Ki (t). (38)

By applying Eq. (38) to Theorem 9 repeatedly for k = 1, 2, · · · , n, we have

ETr exp

(
n∑

i=1

tXi

)
=1 E0 · · ·En−1Tr exp

(
n−1∑
i=1

tXi + tXn

)

≤ E0 · · ·En−2Tr exp

(
n−1∑
i=1

tXi + log
(
En−1e

tXn
))

= E0 · · ·En−2Tr exp

(
n−2∑
i=1

tXi + tXn−1 +Kn(t).

)

≤ E0 · · ·En−3Tr exp

(
n−2∑
i=1

tXi +Kn−1(t) +Kn(t)

)

· · · ≤ Tr exp

(
n∑

i=1

Ki (t)

)
(39)

where the equality =1 is based on the law of total expectation by defining Ei

as the conditional expectation given X1, · · · ,Xi . □
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Theorem 11 (Master Tail Bound for Independent Sum of Random
Tensors)
Given a finite sequence of independent Hermitian random tensors {Xi}, we have

Pr

(
λmax(

n∑
i=1

Xi ) ≥ θ

)
≤ inf

t>0

{
e−tθTr exp

(
n∑

i=1

logEetXi

)}
. (40)

Proof: By substituing the Lemma 10 into the Laplace transform bound provided
by the Lemma 6, this theorem is established. □
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Corollaries for Master Tail Bound for Independent Sum of
Random Tensors

Corollary 12
Given a finite sequence of independent Hermitian random tensors {Xi} with
dimensions in CI1×···×IM×I1×···×IM . If there is a function f : (0,∞) → [0,∞] and a
sequence of non-random Hermitian tensors {Ai} with following condition:

f (t)Ai ⪰ logEetXi , for t > 0. (41)

Then, for all θ ∈ R, we have

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ IM1 inf

t>0

{
exp

[
−tθ + f (θ)λmax

(
n∑

i=1

Ai

)]}
(42)

Corollary 13
Given a finite sequence of independent Hermitian random tensors {Xi} with
dimensions in CI1×···×IM×I1×···×IM . For all θ ∈ R, we have

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ IM1 inf

t>0

{
exp

−tθ + n log λmax


n∑

i=1

EetXi

n


}
(43)
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Tensor with Gaussian and Rademacher Random Series,
Square Tensor

Lemma 14
Suppose that the tensor A is Hermitian. Given a Gaussian normal random
variable α and a Rademacher random variable β, then, we have

EeαtA = et
2A2/2 and et

2A2/2 ⪰ EeβtA, (44)

where t ∈ R.

Theorem 15 (Hermitian Tensor with Gaussian and Rademacher
Series)
Given a finite sequence Ai of fixed Hermitian tensors with dimensions as
CI1×···×IM×I1×···×IM , and let {αi} be a finite sequence of indepedent normal
variables. We define

σ2 def
=

∥∥∥∥∥
n∑
i

A2
i

∥∥∥∥∥ , (45)

then, for all θ ≥ 0, we have

Pr

(
λmax

(
n∑

i=1

αiAi

)
≥ θ

)
≤ IM1 e−

θ2

2σ2 , (46)

and

Pr

(∥∥∥∥∥
n∑

i=1

αiAi

∥∥∥∥∥ ≥ θ

)
≤ 2IM1 e−

θ2

2σ2 . (47)

This theorem is also valid for a finite sequence of independent Rademacher
random variables {αi}.
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Corollary 16 (Rectangular Tensor with Gaussian and Rademacher
Series)
Given a finite sequence Ai of fixed Hermitian tensors with dimensions as
CI1×···×IM×J1×···×JM , and let {αi} be a finite sequence of indepedent normal
variables. We define

σ2 def
= max

{∥∥∥∥∥
n∑

i=1

Ai ⋆M AH
i

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

AH
i ⋆M Ai

∥∥∥∥∥
}
. (48)

then, for all θ ≥ 0, we have

Pr

(∥∥∥∥∥
n∑

i=1

αiAi

∥∥∥∥∥ ≥ θ

)
≤

M∏
m=1

(Im + Jm)e
− θ2

2σ2 . (49)

This corrollary is also valid for a finite sequence of independent Rademacher
random variables {αi}.
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Tensor Chernoff Bounds
Lemma 17
Given a random positive semifefinite tensor with λmax(X ) ≤ 1, then, for any
t ∈ R, we have

I + (et − 1)EX ⪰ EetX . (50)

Theorem 18 (Tensor Chernoff Bound I)
Consider a sequence {Xi ∈ CI1×···×IM×I1×···×IM} of independent, random,
Hermitian tensors that satisfy

Xi ⪰ O and λmax(Xi ) ≤ 1 almost surely. (51)

Define following two quantaties:

µmax
def
= λmax

(
1

n

n∑
i=1

EXi

)
and µmin

def
= λmin

(
1

n

n∑
i=1

EXi

)
, (52)

then, we have following two inequalities:

Pr

(
λmax

(
1

n

n∑
i=1

Xi

)
≥ θ

)
≤ IM1 e−nD(θ||µmax), for µmax ≤ θ ≤ 1; (53)

and

Pr

(
λmin

(
1

n

n∑
i=1

Xi

)
≤ θ

)
≤ IM1 e−nD(θ||µmin), for 0 ≤ θ ≤ µmin. (54)
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Proof of Tensor Chernoff Bound I
From Lemma 17, we have

I + f (t)EXi ⪰ EetXi , (55)

where f (t)
def
= et − 1 for t > 0. By applying Corollary 13, we obtain

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ α

)
≤ IM1 exp

(
−tα+ n log λmax

(
1

n

n∑
i=1

(I + f (t)EXi )

))

= IM1 exp

(
−tα+ n log λmax

(
I + f (t)

1

n

n∑
i=1

EXi

))
= IM1 exp (−tα+ n log (1 + f (t)µmax)) . (56)

The last equality follows from the definition of µmax and the eigenvalue map
properties. When the value t at the right-hand side of Eq. (56) is

t = log
α

1− α
− log

µmax

1− µmax

, (57)

we can achieve the tighest upper bound at Eq. (56). By substituing the value
t in Eq. (57) into Eq. (56) and change the varaible α→ nθ, Eq. (53) is
proved. The next goal is to prove Eq. (54).
If we apply Lemma 17 to the sequence {−Xi}, we have

I − g(t)EXi ⪰ Eet(−Xi ), (58)

where g(t)
def
= 1− et for t > 0.
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Proof of Tensor Chernoff Bound I, cont.
By applying Corollary 13 again, we obtain

Pr

(
λmin

(
n∑

i=1

Xi

)
≤ α

)
= Pr

(
λmax

(
n∑

i=1

(−Xi )

)
≥ α

)

≤ IM1 exp

(
tα+ n log λmax

(
1

n

n∑
i=1

(I − g(t)EXi )

))

=1 IM1 exp

(
tα+ n log

(
1− f (t)λmin

(
1

n

n∑
i=1

EXi

)))
= IM1 exp (tα+ n log (1− g(t)µmin)) , (59)

where we apply the relation λmin(− 1
n

n∑
i=1

EXi ) = −λmax(
1
n

n∑
i=1

EXi ) at the

equality =1. When the value t at the right-hand side of Eq. (59) is

t = log
µmax

1− µmax

− log
α

1− α
, (60)

we can achieve the tighest upper bound at Eq. (59). By substituing the value
t in Eq. (60) into Eq. (59) and change the varaible α→ nθ, Eq. (54) is
proved also. □
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Tensor Bernstein Bounds
Lemma 19
Given a random Hermitian tensor X ∈ CI1×···×IM×I1×···×IM that satisfies:

EX = 0 and λmax(X ) ≤ 1 almost surely. (61)

Then, we have

e(e
t−t−1)E(X 2) ⪰ EetX (62)

where t > 0.

Theorem 20 (Bounded λmax Tensor Bernstein Bounds)
Given a finite sequence of independent Hermitian tensors
{Xi ∈ CI1×···×IM×I1×···×IM} that satisfy

EXi = 0 and λmax(Xi ) ≤ T almost surely. (63)

Define the total varaince σ2 as: σ2 def
=

∥∥∥∥ n∑
i

E
(
X 2

i

)∥∥∥∥. Then, we have following

inequalities:

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−θ2/2

σ2 + Tθ/3

)
; (64)

and

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−3θ2

8σ2

)
for θ ≤ σ2/T ; (65)

and

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−3θ

8T

)
for θ ≥ σ2/T . (66)
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Proof for Bounded λmax Tensor Bernstein Bounds
Without loss of generality, we can assume that T = 1 since the summands
are 1-homogeneous and the variance is 2-homogeneous. From Lemma 19, we
have

EetXi ⪯ e(e
t−t−1)E(X 2

i ) for t > 0. (67)

By applying Corollary 12, we then have

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−tθ + (et − t − 1)λmax

(
n∑

i=1

E
(
X 2

i

)))
= IM1 exp

(
−tθ + σ2(et − t − 1)

)
. (68)

The right-hand side of Eq. (68) can be minimized by setting
t = log(1 + θ/σ2). Substitute such t and simplify the right-hand side of
Eq. (68), we obtain Eq. (135).
For θ ≤ σ2/T , we have

1

σ2 + Tθ/3
≥ 1

σ2 + T (σ2/T )/3
=

3

4σ2
, (69)

then, we obtain Eq. (136). Correspondingly, for θ ≥ σ2/T , we have

θ

σ2 + Tθ/3
≥ σ2/T

σ2 + T (σ2/T )/3
=

3

4T
, (70)

then, we obtain Eq. (137) also. □
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Tensor Martingales
Necessary definitions about tensor martingales will be provied here for later
tensor martingale deviation bounds derivations. Let (Ω,F,P) be a master
probability space. Consider a filtration {Fi} contained in the master sigma
algebra as:

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F∞ ⊂ F. (71)

Given such a filtration, we define the conditional expectation Ei [·]
def
= Ei [·|Fi ].

A sequence {Yi} of random tensors is called adapted to the filtration when
each tensor Yi is measuable with respec to Fi . We can think that an adapted
sequence is one where the present depends only on the past.
An adapted sequence {Xi} of Hermitian tensors is named as a tensor
martingale when

Ei−1Xi = Xi−1 and E ∥Xi∥ <∞, (72)

where i = 1, 2, 3, · · · . We obtain a scalar martingale if we track any fixed
entry of a tensor martingale {Xi}. Given a tensor martingale {Xi}, we can
construct the following new sequence of tensors

Yi
def
= Xi −Xi−1 for i = 1, 2, 3, · · · (73)

We then have Ei−1Yi = O.
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Two Lemmas About Tensor Martingales

Lemma 21 (Tensor Symmetrization)
Let A be a fixed Hermitian tensor, and let X be a random Hermitian tensor
with EE = O. Then

ETreA+X ≤ ETreA+2βX , (74)

where β is Rademacher random variable.

The other Lemma is to provide the tensor cumulant-generating function of a
symetrized random tensor.

Lemma 22 (Cumulant-Generating Function of Symetrized
Random tensor)
Given that X is a random Hermitian tensor and A is a fixed Hermitian tensor
that satisfies X 2 ⪯ A2. Then, we have

logE
[
e2βtX |X

]
⪯ 2t2A2. (75)
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Theorem 23 (Tensor Azuma Inequality)
Given a finite adapted sequence of Hermitian tensors
{Xi ∈ CI1×···×IM×I1×···×IM} and a fixed sequence of Hermitian tensors {Ai}
that satisfy

Ei−1Xi = 0 and X 2
i ⪯ A2

i almost surely, (76)

where i = 1, 2, 3, · · · .

Define the total varaince σ2 as: σ2 def
=

∥∥∥∥ n∑
i

A2
i

∥∥∥∥. Then, we have following

inequalities:

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ IM1 e−

θ2

8σ2 . (77)
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Proof of Tensor Azuma Inequality
Define the filtration Fi

def
= F(X1, · · · ,Xi ) for the process {Xi}. Then, we have

ETr exp

(
n∑

i=1

tXi

)
= E

(
E

(
Tr exp

(
n−1∑
i=1

tXi + tXn

)
|Fn

)
|Fn−1

)

≤ E

(
E

(
Tr exp

(
n−1∑
i=1

tXi + 2βtXn

)
|Fn

)
|Fn

)

≤ E

(
Tr exp

(
n−1∑
i=1

tXi + logE
(
e2βtXn |Fn

))
|Fn

)

≤ ETr exp

(
n−1∑
i=1

tXi + 2t2A2
n

)
, (78)

where the first equality comes from the tower property of conditional
expectation; the first inequality comes from Lemma 21, and the relaxation
the conition to the larger algebra set Fn; finally, the last inequality requires
Lemma 22.
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Proof of Tensor Azuma Inequality, cont.
If we continue the iteration procedure based on Eq. (78), we have

ETr exp

(
n∑

i=1

tXi

)
≤ Tr exp

(
2t2

n∑
i=1

A2
i

)
, (79)

then apply Eq. (79) into Lemma 6, we obtain

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ inf

t>0

{
e−tθETr exp

(
n∑

i=1

tXi

)}
≤ inf

t>0

{
e−tθETr exp

(
2t2

n∑
i=1

A2
i

)}
≤ inf

t>0

{
e−tθIM1 λmax

(
exp

(
2t2

n∑
i=1

A2
i

))}
= inf

t>0

{
e−tθIM1 exp

(
2t2σ2

)}
≤ IM1 e−

θ2

8σ2 , (80)

where the third inequality utilizes λmax to bound trace, the equality applies
the definition of σ2 and spectral mapping theorem, finally, we select t = θ

4σ2

to minimize the upper bound to obtain this theorem. □
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Theorem 24 (Tensor McDiarmid Inequality)
Given a set of n independent random variables, i.e. {Xi : i = 1, 2, · · · n}, and
let F be a Hermitian tensor-valued function that maps these n random
variables to a Hermitian tensor of dimension within CI1×···×IM×I1×···×IM .
Consider a sequence of Hermitian tensors {Ai} that satisfy

(F (x1, · · · , xi , · · · , xn)− F (x1, · · · , x ′i , · · · , xn))
2 ⪯ A2

i , (81)

where xi , x
′
i ∈ Xi and 1 ≤ i ≤ n. Define the total varaince σ2 as:

σ2 def
=

∥∥∥∥ n∑
i

A2
i

∥∥∥∥. Then, we have following inequality:

Pr (λmax (F (x1, · · · , xn)− EF (x1, · · · , xn)) ≥ θ) ≤ IM1 e−
θ2

8σ2 . (82)
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Motivation

Previous theory is based on the summation of independent random
tensors, how about the tail bouns for the function of random tensors
sum? We wish to consider the following problem:

Pr

∥∥∥∥∥∥g
 m∑

j=1

Xj

∥∥∥∥∥∥ ≥ θ

 ≤ some bounds ? (83)

where ∥ ∥ is a tensor norm function. The answer is: Yes!.
But we need more tools:

▶ Unitarily Invariant Tensor Norms.

▶ Antisymmetric Tensor Product.

▶ Marorization.
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Unitarily Invariant Tensor Norms, I

Let us represent the Hermitian eigenvalues of a Hermitian tensor
H ∈ CI1×···×IN×I1×···×IN in decreasing order by the vector
λ⃗(H) = (λ1(H), · · · , λr (H)), where r is the Hermitian rank of the tensor
H. We use R≥0(R>0) to represent a set of nonnegative (positive) real
numbers. Let ∥·∥ρ be a unitarily invariant tensor norm, i.e.,
∥H ⋆N U∥ρ = ∥U ⋆N H∥ρ = ∥H∥ρ, where U is any unitary tensor. Let
ρ : Rr

≥0 → R≥0 be the corresponding gauge function that satisfies
Hölder’s inequality so that

∥H∥ρ = ∥|H|∥ρ = ρ(λ⃗(|H|)), (84)

where |H| def
=
√

HH ⋆N H. The bijective correspondence between
symmetric gauge functions on Rr

≥0.
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Unitarily Invariant Tensor Norms, II
Several popular norms can be treated as special cases of unitarily
invariant tensor norm. The first one is Ky Fan like k-norm [FH55] for
tensors. For k ∈ {1, 2, · · · , r}, the Ky Fan k-norm [FH55] for tensors
HCI1×···×IN×I1×···×IN , denoted as ∥H∥(k), is defined as:

∥H∥(k)
def
=

k∑
i=1

λi (|H|). (85)

If k = 1, the Ky Fan k-norm for tensors is the tensor operator norm,
denoted as ∥H∥. The second one is Schatten p-norm for tensors, denoted
as ∥H∥p, is defined as:

∥H∥p
def
= (Tr|H|p)

1
p , (86)

where p ≥ 1. If p = 1, it is the trace norm. The third one is k-trace
norm, denoted as Trk [H], defined by [Hua20]. It is

Trk [H]
def
=

∑
1≤i1<i2<···ik≤r

λi1λi1 · · ·λik (87)

where 1 ≤ k ≤ r . If k = 1, Trk [H] is reduced as trace norm.
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Unitarily Invariant Tensor Norms, III

Following inequality is the extension of Hölder inequality to gauge
function ρ which will be used by later to prove majorization relations.

Lemma 25
For n nonnegative real vectors with the dimension r , i.e.,

bi = (bi1 , · · · , bir ) ∈ Rr
≥0, and α > 0 with

n∑
i=1

αi = 1, we have

ρ

(
n∏

i=1

bαi

i1
,

n∏
i=1

bαi

i2
, · · · ,

n∏
i=1

bαi

ir

)
≤

n∏
i=1

ρ(bi )
αi (88)
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Antisymmetric Tensor Product, I

Let H be a Hilbert space of dimension r , L(H) be the set of tensors
(linear operators) on H. Two tensors A,B ∈ L(H) is said A ≥ B if A−B
is a nonnegative Hermitian tensor. For any k ∈ {1, 2, · · · , r}, let H⊗k be
the k-th tensor power of the space H and let H∧k be the antisymmetric
subspace of H⊗k . We define function ∧k : L(H) → L(H∧k) as mapping
any tensor A to the restriction of A⊗k ∈ L(H⊗k) to the antisymmetric
subspace H∧k of H⊗k . Following lemma summarizes several useful
properties of such antisymmetric tensor products.
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Antisymmetric Tensor Product, II

Lemma 26
Let A,B, C ∈ CI1×···×IN×I1×···×IN be tensors in L(H), and
D ∈ CI1×···×IN×I1×···×IN be Hermitian tensors from H with Hermitian rank
r . For any k ∈ {1, 2, · · · , r}, we have

1. (A∧k)H = (AH)∧k ,.

2. (A∧k) ⋆N (B∧k) = (A ⋆N B)∧k .

3. If lim
i→∞

∥Ai −A∥ → 0 , then lim
i→∞

∥∥A∧k
i −A∧k

∥∥→ 0.

4. If C ≥ O (zero tensor), then C∧k ≥ O and (Cp)∧k = (C∧k)p for all
p ∈ R>0.

5. |A|∧k = |A∧k |.
6. If D ≥ O and D is invertibale, (Dz)∧k = (D∧k)z for all z ∈ D.

7.
∥∥A∧k

∥∥ =
k∏

i=1

λi (|A|).
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Marorization, I
Let x = [x1, · · · , xr ] ∈ Rr , y = [y1, · · · , yr ] ∈ Rr be two vectors with following
orders among entries x1 ≥ · · · ≥ xr and y1 ≥ · · · ≥ yr , weak majorization
between vectors x, y, represented by x ≺w y, requires following relation for
vectors x, y:

k∑
i=1

xi ≤
k∑

i=1

yi , (89)

where k ∈ {1, 2, · · · , r}. Majorization between vectors x, y, indicated by
x ≺ y, requires following relation for vectors x, y:

k∑
i=1

xi ≤
k∑

i=1

yi , for 1 ≤ k < r ;

r∑
i=1

xi =
r∑

i=1

yi , for k = r . (90)
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Marorization, II
For x, y ∈ Rr

≥0 such that x1 ≥ · · · ≥ xr and y1 ≥ · · · ≥ yr , weak log
majorization between vectors x, y, represented by x ≺w log y, requires
following relation for vectors x, y:

k∏
i=1

xi ≤
k∏

i=1

yi , (91)

where k ∈ {1, 2, · · · , r}, and log majorization between vectors x, y,
represented by x ≺log y, requires equality for k = r in Eq. (91). If f is a
single variable function, f (x) represents a vector of [f (x1), · · · , f (xr )]
From Lemma 1 in [HKT17], we have

Lemma 27
(1) For any convex function f : [0,∞) → [0,∞), if we have x ≺ y, then
f (x) ≺w f (y).
(2) For any convex function and non-decreasing f : [0,∞) → [0,∞), if we
have x ≺w y, then f (x) ≺w f (y).
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Marorization, III

Another lemma is from Lemma 12 in [HKT17], we have

Lemma 28
Let x, y ∈ Rr

≥0 such that x1 ≥ · · · ≥ xr and y1 ≥ · · · ≥ yr with x ≺log y.
Also let yi = [yi ;1, · · · , yi ;r ] ∈ Rr

≥0 be a sequence of vectors such that
yi ;1 ≥ · · · ≥ yi ;r > 0 and yi → y as i → ∞. Then, there exists i0 ∈ N and
xi = [xi ;1, · · · , xi ;r ] ∈ Rr

≥0 for i ≥ i0 such that xi ;1 ≥ · · · ≥ xi ;r > 0,
xi → x as i → ∞, and

xi ≺log yi for i ≥ i0. (92)
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Majorization wtih Integral Average
Let Ω be a σ-compact metric space and ν a probability measure on the
Boreal σ-field of Ω. Let C,Dτ ∈ CI1×···×IN×I1×···×IN be Hermitian tensors
with Hermitian rank r . We further assume that tensors C,Dτ are
uniformly bounded in their norm for τ ∈ Ω. Let τ ∈ Ω → Dτ be a
continuous function such that sup{∥Dτ∥ : τ ∈ Ω} <∞. For notational
convenience, we define the following relation:[∫

Ω

λ1(Dτ )dν(τ), · · · ,
∫
Ω

λr (Dτ )dν(τ)

]
def
=

∫
Ωr

λ⃗(Dτ )dν
r (τ). (93)

If f is a single variable function, the notation f (C) represents a tensor
function with respect to the tensor C.

Theorem 29
Let f : R → [0,∞) be a non-decreasing convex function, we have
following two equivalent statements:

λ⃗(C) ≺w

∫
Ωr

λ⃗(Dτ )dν
r (τ) ⇐⇒ ∥f (C)∥ρ ≤

∫
Ω

∥f (Dτ )∥ρ dν(τ), (94)

where ∥·∥ρ is the unitarily invariant norm defined in Eq. (84).
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Majorization wtih Integral Average, cont.

Next theorem will provide a stronger version of Theorem 29 by removing
weak majorization conditions.

Theorem 30
Let f : R → [0,∞) be a convex function, we have following two
equivalent statements:

λ⃗(C) ≺
∫
Ωr

λ⃗(Dτ )dν
r (τ) ⇐⇒ ∥f (C)∥ρ ≤

∫
Ω

∥f (Dτ )∥ρ dν(τ), (95)

where ∥·∥ρ is the unitarily invariant norm defined in Eq. (84).
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Log-Majorization wtih Integral Average

Theorem 31
Let C,Dτ be nonnegative Hermitian tensors, f : (0,∞) → [0,∞) be a
continous function such that the mapping x → log f (ex) is convex on R,
and g : (0,∞) → [0,∞) be a continous function such that the mapping
x → g(ex) is convex on R , then we have following three equivalent
statements:

λ⃗(C) ≺w log exp

∫
Ωr

log λ⃗(Dτ )dν
r (τ); (96)

∥f (C)∥ρ ≤ exp

∫
Ω

log ∥f (Dτ )∥ρ dν(τ); (97)

∥g(C)∥ρ ≤
∫
Ω

∥g(Dτ )∥ρ dν(τ). (98)
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Log-Majorization wtih Integral Average, cont

Next theorem will extend Theorem 31 to non-weak version.

Theorem 32
Let C,Dτ be nonnegative Hermitian tensors with

∫
Ω
∥D−p

τ ∥ρ dν(τ) <∞
for any p > 0, f : (0,∞) → [0,∞) be a continous function such that the
mapping x → log f (ex) is convex on R, and g : (0,∞) → [0,∞) be a
continous function such that the mapping x → g(ex) is convex on R ,
then we have following three equivalent statements:

λ⃗(C) ≺log exp

∫
Ωr

log λ⃗(Dτ )dν
r (τ); (99)

∥f (C)∥ρ ≤ exp

∫
Ω

log ∥f (Dτ )∥ρ dν(τ); (100)

∥g(C)∥ρ ≤
∫
Ω

∥g(Dτ )∥ρ dν(τ). (101)

50 / 81



Multivaraite Tensor Norm Inequalities

Lemma 33 ( Lie-Trotter product formula for tensors)
Let m ∈ N and (Lk)

m
k=1 be a finite sequence of bounded tensors with

dimensions Lk ∈ CI1×···×IM×I1×···×IM , then we have

lim
n→∞

(
m∏

k=1

exp(
Lk

n
)

)n

= exp

(
m∑

k=1

Lk

)
(102)
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Multivaraite Tensor Norm Inequalities, cont

Theorem 34
Let Ci ∈ CI1×···×IN×I1×···×IN be positive Hermitian tensors for 1 ≤ i ≤ n with
Hermitian rank r , ∥·∥ρ be a unitarily invaraint norm with corresponding
gauge function ρ. For any continous function f : (0,∞) → [0,∞) such that
x → log f (ex) is convex on R, we have∥∥∥∥∥f

(
exp

(
n∑

i=1

log Ci

))∥∥∥∥∥
ρ

≤ exp

∫ ∞

−∞
log

∥∥∥∥∥f
(∣∣∣∣∣

n∏
i=1

C1+ιt
i

∣∣∣∣∣
)∥∥∥∥∥

ρ

β0(t)dt, (103)

where β0(t) =
π

2(cosh(πt)+1) .

For any continous function g(0,∞) → [0,∞) such that x → g(ex) is convex
on R, we have∥∥∥∥∥g

(
exp

(
n∑

i=1

log Ci

))∥∥∥∥∥
ρ

≤
∫ ∞

−∞

∥∥∥∥∥g
(∣∣∣∣∣

n∏
i=1

C1+ιt
i

∣∣∣∣∣
)∥∥∥∥∥

ρ

β0(t)dt.(104)
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Ky Fan k-norm Tail Bound

Lemma 35
Let Ci ∈ CI1×···×IN×I1×···×IN with Hermitian rank r and let pi be positive real

numbers satisfying
m∑
i=1

1
pi

= 1. Then, we have

∥∥∥∥∥
∣∣∣∣∣
m∏
i=1

Ci

∣∣∣∣∣
s∥∥∥∥∥

(k)

≤
m∏
i=1

(∥∥|Ci |spi∥∥(k)) 1
pi ≤

m∑
i=1

∥∥|Ci |spi∥∥(k)
pi

(105)

where s ≥ 1 and k ∈ {1, 2, · · · , r}.

Lemma 36
Let Ci ∈ CI1×···×IN×I1×···×IN with Hermitian rank r , then we have∥∥∥∥∥

∣∣∣∣∣
m∑
i=1

Ci

∣∣∣∣∣
s∥∥∥∥∥

(k)

≤ ms−1
m∑
i=1

∥∥|Ci |s∥∥(k) (106)

where s ≥ 1 and k ∈ {1, 2, · · · , r}.
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Ky Fan k-norm Tail Bound, cont
Theorem 37
Consider a sequence {Xj ∈ CI1×···×IN×I1×···×IN} of independent, random,
Hermitian tensors. Let g be a polynomial function with degree n and
nonnegative coeffecients a0, a1, · · · , an raised by power s ≥ 1, i.e.,
g(x) = (a0 + a1x + · · ·+ anx

n)s . Suppose following condition is satisfied:

g

exp

t
m∑
j=1

Xj

 ⪰ exp

tg

 m∑
j=1

Xj

 almost surely, (107)

where t > 0. Then, we have

Pr


∥∥∥∥∥∥g
 m∑

j=1

Xj

∥∥∥∥∥∥
(k)

≥ θ

 ≤

(n + 1)s−1 inf
t,pj

e−θt

kas0 +
n∑

l=1

m∑
j=1

alsl E ∥exp (pj lstXj)∥(k)
pj

 . (108)

where
m∑
j=1

1
pj

= 1 and pj > 0.
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Ky Fan k-norm Tail Bound, proof
Let t > 0 be a parameter to be chosen later. Then

Pr


∥∥∥∥∥∥g
 m∑

j=1

Xj

∥∥∥∥∥∥
(k)

≥ θ

 = Pr


∥∥∥∥∥∥exp

tg

 m∑
j=1

Xj

∥∥∥∥∥∥
(k)

≥ exp (θt)


≤1 exp (−θt)E


∥∥∥∥∥∥exp

tg

 m∑
j=1

Xj

∥∥∥∥∥∥
(k)


≤2 exp (−θt)E


∥∥∥∥∥∥g
exp

t
m∑
j=1

Xj

∥∥∥∥∥∥
(k)

(109)
where ≤1 uses Markov’s inequality, ≤2 requires condition provided by
Eq. (107).
We can further bound the expectation term in Eq. (108) as

E


∥∥∥∥∥∥g
exp

t
m∑
j=1

Xj

∥∥∥∥∥∥
(k)

 ≤3 E
∫ ∞

−∞

∥∥∥∥∥∥g
∣∣∣∣∣∣

m∏
j=1

e(1+ιτ)tXj

∣∣∣∣∣∣
∥∥∥∥∥∥

(k)

β0(τ)dτ

≤4 (n + 1)s−1

kas0 +
n∑

l=1

alsl E
∫ ∞

−∞

∥∥∥∥∥∥∥
∣∣∣∣∣∣
m∏
j=1

e(1+ιτ)tXj

∣∣∣∣∣∣
ls
∥∥∥∥∥∥∥
(k)

β0(τ)dτ

 , (110)

where ≤3 from Eq. (104) in Theorem 34, ≤4 is obtained from function g
definition and Lemma 36.
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Ky Fan k-norm Tail Bound, proof, cont.
Again, the expectation term in Eq. (110) can be further bounded by
Lemma 35 as

E
∫ ∞

−∞

∥∥∥∥∥∥∥
∣∣∣∣∣∣
m∏
j=1

e(1+ιτ)tXj

∣∣∣∣∣∣
ls
∥∥∥∥∥∥∥
(k)

β0(τ)dτ ≤ E
∫ ∞

−∞

m∑
j=1

∥∥∥∣∣etXj
∣∣pj ls∥∥∥

(k)

pj
β0(τ)dτ

=
m∑
j=1

E
∥∥epj lstXj

∥∥
(k)

pj
. (111)

Note that the final equality is obtained due to that the integrand is
indepedent of the variable τ and

∫∞
−∞ β0(τ)dτ = 1.

Finally, this theorem is established from Eqs. (109), (110), and (111). □
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Theorem 38 (Generalized Tensor Chernoff Bound)
Consider a sequence {Xj ∈ CI1×···×IN×I1×···×IN} of independent, random,
Hermitian tensors. Let g be a polynomial function with degree n and
nonnegative coeffecients a0, a1, · · · , an raised by power s ≥ 1, i.e.,
g(x) = (a0 + a1x + · · ·+ anx

n)s with s ≥ 1. Suppose following condition is
satisfied:

g

exp

t
m∑
j=1

Xj

 ⪰ exp

tg

 m∑
j=1

Xj

 almost surely, (112)

where t > 0. Moreover, we require

Xi ⪰ O and λmax(Xi ) ≤ R almost surely. (113)

Then we have following inequality:

Pr


∥∥∥∥∥∥g
 m∑

j=1

Xj

∥∥∥∥∥∥
(k)

≥ θ

 ≤ (n + 1)s−1 inf
t>0

e−θt ·

kas0 +
n∑

l=1

m∑
j=1

kalsl
m

[
1 +

(
emlsRt − 1

)
σ1(Xj) + C

(
emlsRt − 1

)
Ξ(Xj)

] ,(114)

where σ1(Xj)
def
=

[
σ1

(
Xj+X∗

j

2

)
+ σ1

(
Xj−X∗

j

2

)]
.
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Theorem 39 (Generalized Tensor Bernstein Bound)
Consider a sequence {Xj ∈ CI1×···×IN×I1×···×IN} of independent, random,
Hermitian tensors. Let g be a polynomial function with degree n and
nonnegative coeffecients a0, a1, · · · , an raised by power s ≥ 1, i.e.,
g(x) = (a0 + a1x + · · ·+ anx

n)s with s ≥ 1. Suppose following condition is
satisfied:

g

exp

t
m∑
j=1

Xj

 ⪰ exp

tg

 m∑
j=1

Xj

 almost surely, (115)

where t > 0, and we also have

EXj = O and X p
j ⪯

p!A2
j

2
almost surely for p = 2, 3, 4, · · · . (116)

Then we have following inequality:

Pr


∥∥∥∥∥∥g
 m∑

j=1

Xj

∥∥∥∥∥∥
(k)

≥ θ

 ≤ (n + 1)s−1 inf
t>0

e−θtk ·

as0 +
n∑

l=1

m∑
j=1

alsl

[
1

m
+

m(lst)2σ1(A2
j )

2(1−mlst)
+ lstCΥ(Xj)

] . (117)
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Another Direction of Concentration Bounds
Another direction to extend from the basic Chernoff bound is to consider
non-independent assumptions for random variables. By Gillman [Gil98], they
changed the independence assumption to Markov dependence and we
summarize their works as follows. We are given G as a regular λ-expander
graph with vertex set V, and g : V → C as a bounded function. Suppose
v1, v2 · · · , vκ is a stationary random walk of length κ on G, it is shown that:

Pr

∥∥∥∥∥∥ 1κ
κ∑

j=1

g(vi )− E[g ]

∥∥∥∥∥∥ ≥ ϑ

 ≤ 2 exp(−Ω(1− λ)κϑ2). (118)

The value of λ is also the second largest eigenvalue of the transition matrix
of the underlying graph G. The bound given in Eq. (118) is named as
“Expander Chernoff Bound”.
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Expectation Estimation for Product of Tensors, I
Let A be the normalized adjacency matrix of the underlying graph G and let
Ã = A⊗ I(IM1 )2 , where the identity tensor I(IM1 )2 has dimensions as

I 21 × · · · × I 2M × I 21 × · · · × I 2M . We use F ∈ C(n×I 21×···×I 2M)×(n×I 21×···×I 2M) to
represent block diagonal tensor valued matrix where the v -th diagonal block
is the tensor

Tv = exp

(
tg(v)(a+ ιb)

2

)
⊗ exp

(
tg(v)(a− ιb)

2

)
. (119)

The tensor F can also be expressed as

F =


Tv1 O · · · O
O Tv2 · · · O
...

...
. . .

...
O O · · · Tvn

 . (120)

Then the tensor
(
F ⋆M+1 Ã

)κ
is a block tensor valued matrix whose

(u, v)-block is a tensor with dimensions as I 21 × · · · × I 2M × I 21 × · · · × I 2M
expressed as :

∑
v1,··· ,vκ−1∈V

Au,v1

κ−2∏
j=1

Avj ,vj+1

Avκ−1,v

(
Tu ⋆2M Tv1 ⋆2M · · · ⋆2M Tvκ−1

)
(121)
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Expectation Estimation for Product of Tensors, II
Let u0 ∈ Cn×I21×···×I2M be the tensor obtained by 1√

n
⊗ col(IIM1 ), where 1 is

the all ones vector with size n and col(IIM1 ) ∈ CI 21×···×I 2M×1 is the column

tensor of the identity tensor IIM1 ∈ CI1×···×IM×I1×···×IM . By applying the
following relation:〈

col(IIM1 ), C ⊗ B ⋆M col(IIM1 )
〉
= Tr

(
C ⋆M BT

)
, (122)

where C,B ∈ CI1×···×IM×I1×···×IM ; we will have following expectation of κ
steps transition of Hermitian tensors from the vertex v1 to the vertex vκ,

E

[
Tr

(
κ∏

i=1

exp

(
tg(vi )(a+ ιb)

2

)
⋆M

1∏
i=κ

exp

(
tg(vi )(a− ιb)

2

))]
=

= E

[〈
col(IIM1 ),

κ∏
i=1

Tvi ⋆M col(IIM1 )
〉]

=

〈
u0,
(
F ⋆M+1 Ã

)κ
⋆M+1 u0

〉
.(123)
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Expectation Estimation for Product of Tensors, III
If we define

(
F ⋆M+1 Ã

)κ
⋆M+1 u0 as uκ, the goal of this section is to

estimate
〈
u0,uκ

〉
.

The trick is to separate the space of u as the subspace spanned by the (IM1 )2

tensors 1⊗ ei denoted by u∥, where 1 ≤ i ≤ (IM1 )2 and ei ∈ CI 21×···×I 2M×1 is
the column tensor of size (IM1 )2 with 1 in position i and 0 elsewhere, and its
orthogonal complement space, denoted by u⊥. Following lemma is required
to bound how the tensor norm is changed in terms of aforementioned
subspace and its orthogonal space after acting by the tensor F ⋆2M+1 Ã. We
require two lemmas.
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Expectation Estimation for Product of Tensors, IV

Lemma 40
Given paramters λ ∈ (0, 1), a ≥ 0, r > 0, and t > 0. Let G = (V,E) be a
regular λ-expander graph on the vetices set V and ∥g(vi )∥ ≤ r for all vi ∈ V.
Each vertex v ∈ V will be assigned a tensor T́v , where
T́v

def
= g(v)(a+ιb)

2 ⊗ IIM1 + IIM1 ⊗ g(v)(a−ιb)
2 ∈ CI 21×···×I 2M×I 21×···×I 2M . Let

F ∈ C(n×I 21×···×I 2M)×(n×I 21×···×I 2M) to represent block diagonal tensor valued
matrix where the v-th diagonal block is the tensor exp(tT́v ) = Tv . For any
tensor u ∈ Cn×I21×···×I2M , we have

1.

∥∥∥∥(F ⋆M+1 Ã ⋆M+1 u∥
)∥∥∥∥∥ ≤ γ1

∥∥u∥∥∥, where γ1 = exp(tr
√
a2 + b2);

2.

∥∥∥∥(F ⋆M+1 Ã ⋆M+1 u⊥
)∥∥∥∥∥ ≤ γ2

∥∥u⊥∥∥, where
γ2 = λ(exp(tr

√
a2 + b2)− 1);

3.

∥∥∥∥(F ⋆M+1 Ã ⋆M+1 u∥
)⊥∥∥∥∥ ≤ γ3

∥∥u∥∥∥, where γ3 = exp(tr
√
a2 + b2)− 1;

4.

∥∥∥∥(F ⋆M+1 Ã ⋆M+1 u⊥
)⊥∥∥∥∥ ≤ γ4

∥∥u⊥∥∥, where γ4 = λ exp(tr
√
a2 + b2).
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Expectation Estimation for Product of Tensors, V
In the following, we will apply Lemma 40 to bound the following term
provided by Eq. (123)〈

u0,
(
F ⋆M+1 Ã

)κ
⋆M+1 u0

〉
(124)

This bound is formulated by the following Lemma 41

Lemma 41
Let G be a regular λ-expander graph on the vertex set V,
g : V → CI1×···×IM×I1×···×IM , and let v1, · · · , vκ be a stationary random walk
on G. If tr

√
a2 + b2 < 1 and λ(2 exp(tr

√
a2 + b2)− 1) ≤ 1, we have:

E

[
Tr

(
κ∏

i=1

exp

(
tg(vi )(a+ ιb)

2

)
⋆M

1∏
i=κ

exp

(
tg(vi )(a− ιb)

2

))]
≤

IM1 exp

[
κ

(
2tr
√

a2 + b2 +
8

1− λ
+

16tr
√
a2 + b2

1− λ

)]
. (125)
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Theorem 42 (Tensor Expander Chernoff Bound)
Let G = (V,E) be a regular undirected graph whose transition matrix has second
eigenvalue λ, and let g : V →∈ CI1×···×IM×I1×···×IM be a function. We assume
following:

1. For each v ∈ V, g(v) is a Hermitian tensor;
2. ∥g(v)∥ ≤ r ;
3. A nonnegative coefficients polynomial raised by the power s ≥ 1 as

f : x → (a0 + a1x + a2x
2 + · · ·+ anx

n)s satisfying

f

(
exp

(
t

κ∑
j=1

g(vj)

))
≥ exp

(
tf

(
κ∑

j=1

g(vj)

))
almost surely;

4. For τ ∈ [∞,∞], we have constants C and σ such that β0(τ) ≤
C exp(−τ2

2σ2 )

σ
√
2π

.

Then, we have

Pr


∥∥∥∥∥∥f
 κ∑

j=1

g(vj)

∥∥∥∥∥∥
(k)

≥ ϑ

 ≤

min
t>0

[
(n + 1)(s−1)e−ϑt

(
a0k + C

(
k +

√
IM1 − k

k

)
·

n∑
l=1

al exp(8κλ+ 2(κ+ 8λ)lsrt + 2(σ(κ+ 8λ)lsr)2t2)

)]
, (126)

where λ = 1− λ.
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Tail Bounds for T-product Tensors
▶ Aforementioned methods or non-indepedent for tensors under

Einstein product can also be considered again for tensors under
T-product tensors. Works details about tail bounds for tensors under
Einstein product can be found [CL, Cha21a, Cha21c].

▶ The T-product has been shown as a powerful tool in many fields:
signal processing, machine learning, computer vision, image
processing, low-rank tensor approximation,etc, see [CW21b, CW21c]
and references therein. We will show some results about those
bounds for T-product tensors, more details can be found
at [CW21b, CW21c, Cha21b, CW21a]

68 / 81



T-product Tensor with Concavity Approach, I
Theorem 43 (Hermitian T-product Tensor with Gaussian and
Rademacher Series Eigenvalue Version)
Given a finite sequence of fixed T-product tensors Ai ∈ Cm×m×p, and let
{αi} be a finite sequence of independent standard normal variables. We
define

σ2
GR

def
=

∥∥∥∥∥
n∑
i

A2
i

∥∥∥∥∥ , (127)

then, for all θ ≥ 0, we have

Pr

(
λmax

(
n∑

i=1

αiAi

)
≥ θ

)
≤ mpe

− θ2

2σ2
GR . (128)

We use ∥X∥ for the spectral norm, which is the largest singular value for
the T-product tensor X . Then, we have

Pr

(∥∥∥∥∥
n∑

i=1

αiAi

∥∥∥∥∥ ≥ θ

)
≤ 2mpe

− θ2

2σ2
GR . (129)

This theorem is also valid for a finite sequence of independent
Rademacher random variables {αi}.
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T-product Tensor with Concavity Approach, II
Theorem 44 (T-product Tensor Chernoff Bound I)
Consider a sequence {Xi ∈ Cm×m×p} of independent, random, Hermitian
T-product tensors that satisfy

Xi ⪰ O and λmax(Xi ) ≤ 1 almost surely. (130)

Define following two quantaties:

µmax
def
= λmax

(
1

n

n∑
i=1

EXi

)
and µmin

def
= λmin

(
1

n

n∑
i=1

EXi

)
, (131)

then, we have following two inequalities:

Pr

(
λmax

(
1

n

n∑
i=1

Xi

)
≥ θ

)
≤ mpe−nD(θ||µmax), for µmax ≤ θ ≤ 1;(132)

and

Pr

(
λmin

(
1

n

n∑
i=1

Xi

)
≤ θ

)
≤ mpe−nD(θ||µmin), for 0 ≤ θ ≤ µmin.(133)
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T-product Tensor with Concavity Approach, III
Theorem 45 (T-product Tensor Bernstein Bounds with
Bounded λmax)
Given a finite sequence of independent Hermitian T-product tensors
{Xi ∈ Cm×m×p} that satisfy

EXi = 0 and λmax(Xi ) ≤ T almost surely. (134)

Define the total varaince σ2 as: σ2 def
=

∥∥∥∥ n∑
i

E
(
X 2

i

)∥∥∥∥. Then, we have

following inequalities:

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ mp exp

(
−θ2/2

σ2 + Tθ/3

)
; (135)

and

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ mp exp

(
−3θ2

8σ2

)
for θ ≤ σ2/T ; (136)

and

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ mp exp

(
−3θ

8T

)
for θ ≥ σ2/T . (137)
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T-product Tensor with Concavity Approach, IV
Theorem 46 (T-product Tensor Azuma Inequality for
Eigenvalue)
Given a finite adapted sequence of Hermitian tensors {Xi ∈ Cm×m×p}
and a fixed sequence of Hermitian T-product tensors {Ai} that satisfy

Ei−1Xi = 0 and X 2
i ⪯ A2

i almost surely, (138)

where i = 1, 2, 3, · · · .

Define the total varaince σ2 as: σ2 def
=

∥∥∥∥ n∑
i

A2
i

∥∥∥∥. Then, we have following

inequalities:

Pr

(
λmax

(
n∑

i=1

Xi

)
≥ θ

)
≤ mpe−

θ2

8σ2 . (139)
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Generalized T-product Tensor Chernoff Bounds
Theorem 47 (Generalized T-product Tensor Chernoff Bound)
Consider a sequence {Xj ∈ Cm′×m′×p} of independent, random,
Hermitian tensors. Let g be a polynomial function with degree n and
nonnegative coefficients a0, a1, . . . , an raised by power s ≥ 1, i.e.,
g(x) = (a0 + a1x + · · ·+ anx

n)s with s ≥ 1. Suppose the following
condition is satisfied:

g

exp

t
m∑
j=1

Xj

 ≥ exp

tg

 m∑
j=1

Xj

 almost surely, (140)

where t > 0. Moreover, we require

Xi ≥ O and λmax(Xi ) ≤ R almost surely. (141)

Then we have the following inequality:

Pr


∥∥∥∥∥∥g
 m∑

j=1

Xj

∥∥∥∥∥∥
(k)

≥ θ

 ≤ (n + 1)s−1 inf
t>0

e−θt ·

kas0 +
n∑

ℓ=1

m∑
j=1

kaℓsℓ
m

[
1 +

(
emℓsRt − 1

)
σ1(Xj) + C

(
emℓsRt − 1

)
Ξ(Xj)

] ,(142)

where σ1(Xj)
def
=

[
σ1

(
Xj+X∗

j

2

)
+ σ1

(
Xj−X∗

j

2

)]
.
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Generalized T-product Tensor Bernstein Bounds
Theorem 48 (Generalized T-product Tensor Bernstein Bound)
Consider a sequence {Xj ∈ Cm′×m′×p} of independent, random,
Hermitian tensors. Let g be a polynomial function with degree n and
nonnegative coefficients a0, a1, . . . , an raised by power s ≥ 1, i.e.,
g(x) = (a0 + a1x + · · ·+ anx

n)s with s ≥ 1. Suppose the following
condition is satisfied:

g

exp

t
m∑
j=1

Xj

 ≥ exp

tg

 m∑
j=1

Xj

 almost surely, (143)

where t > 0, and we also have

EXj = O and X p
j ≤

p!A2
j

2
almost surely for p = 2, 3, 4, . . . . (144)

Then we have the following inequality:

Pr


∥∥∥∥∥∥g
 m∑

j=1

Xj

∥∥∥∥∥∥
(k)

≥ θ

 ≤ (n + 1)s−1 inf
t>0

e−θtk ·

as0 +
n∑

ℓ=1

m∑
j=1

aℓsℓ

[
1

m
+

m(lst)2σ1(A2
j )

2(1−mlst)
+ lstCΥ(Xj)

] , (145)

where C is a constant and Υ(Xj) is determined from the expectation of
entries from the tensor Xj .
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T-product Tensor Expander Chernoff Bound
Theorem 49 (T-product Tensor Expander Chernoff Bound)
Let G = (V,E) be a regular undirected graph whose transition matrix
has second eigenvalue λ, and let g : V → Rm×m×p be a function. We
assume following:

1. A nonnegative coefficients polynomial raised by the power s ≥ 1 as
f : x → (a0 + a1x + a2x

2 + · · ·+ anx
n)s satisfying

f

(
exp

(
t

κ∑
j=1

g(vj)

))
⪰ exp

(
tf

(
κ∑

j=1

g(vj)

))
almost surely;

2. For each v ∈ V, g(v) is a symmetric T-product tensor with

f

(
κ∑

j=1

g(vj)

)
as TPD T-product tensor;

3. ∥g(v)∥ ≤ r ;
4. For τ ∈ [∞,∞], we have constants C and σ such that

β0(τ) ≤ C
σ
√
2π

exp
(

−τ 2

2σ2

)
.

Then, we have

Pr


∥∥∥∥∥∥f
 κ∑

j=1

g(vj)

∥∥∥∥∥∥
(k)

≥ ϑ

 ≤

min
t>0

{
(n + 1)(s−1)e−ϑt

[
a0k + C

(
mp +

√
(mp − k)mp

k

)
·

n∑
l=1

al exp
(
8κλ+ 2(κ+ 8λ)lsrt + 2(σ(κ+ 8λ)lsr)2t2

)]}
, (146)

where λ = 1− λ.

75 / 81



Conclusions and future works

▶ We established tail bounds for random tensors under situations with
independent sum, dependent sum, and function of sum (Einstein
product and T-product).

▶ Three main techniques used here are trace concavity method,
majorization approach, and Markov chain embedding.

▶ Tightness of these bounds.

▶ Non-linear form.

▶ Applications to numerical computations, data science, etc.
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Questions?
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Thank you very much!
Please email shihyu.chang@sjsu.edu for any further

question.
Shih Yu Chang

Department of Applied Data Science
San Jose State University, USA
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