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Introduction

Nice error bases (NEB) are generalisation of Pauli matrices in higher dimesnion. It is very 
important for quantum information theory e.g. quantum error correcting code, teleportation etc. 
as they form very “nice” bases of the matrix algebra . 


In this work we start with a NEB and further construct a NEB of the space  - the space 
of all linear maps between  into itself considering the identification . This 
construction makes a doorway to study quantum maps and semigroups of quantum maps from 
another perspective. We can take the basis decomposition of any quantum map  
with respect to these NEB and try to characterise them in terms of the corresponding coefficients  

 of the decomposition. Analogous to the Choi and Jamiolkowski’s result on channel-state 
duality we can characterise completely positive(CP) maps in terms of the matrix . 
Furthermore, we can give a characterisation of semigroups of CP maps in term its generators 
which leads to another proof of Lindblad-Gorini- Kossakowski-Sudarshan’s theorem on 
generator of CP semigroup. And finally we establish a characterisation of semigroup k-positive 
maps in terms of its generators. 
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Nice Error Basis and Weyl Operators

Definition: (Nicer Error Basis/NEB)


Let  be a group of order . The set  is called nice error basis if 


i. ,


ii. ,


iii.    where  


 is called the index group of the NEB.


A NEB forms an orthonormal basis (ONB) of  (up to scaling) with respect to the Hilbert-
Schmidt inner product .


Example: Take the map  on the abelian group . Define two unitary 

operators  and  for  on  by its action on the basis 


 	 	 and        


They satisfy the Weyl commutation relation . If we define the discrete Weyl 
operators  as product of these two i.e. 





Then  is a NEB of 

G n2 ℰ = {πg ∈ U(n) : g ∈ G}

π1 = Idn

Tr(πg) = δg,1

πgπh = ω(g, h)πgh ω : ℂ × ℂ ⟶ ℂ .

G

Mn(ℂ)
⟨A, B⟩ := Tr(A*B)

ξ(k, l) = exp
2πikl

n
ℤn × ℤn

Ua Vb a, b ∈ ℤn ℂn { |x⟩ : x ∈ ℤn}

Ua |x⟩ := |x + a⟩ Vb |x⟩ := ξ(b, x) |x⟩

UaVb = ξ(a, b)VbUa

Wa,b

Wa,b := UaVb

{Wa,b : a, b ∈ ℤn} Mn .

Characterisation of Quantum Maps

Theorem:  Let  be a basis of . Then a linear map  is positive if and 

only if 


,


Where  and  is the flip operator.


Theorem: A linear map  is completely positive if and only if the corresponding 
matrix  is positive.


Proposition: Let  be an index group of a NEB. A linear map  is  trace 
preserving if and only if 


	   for all .

{πx}n2

x=1 Mn(ℂ) α ∈ L(Mn, Mn)
∀u, v ∈ ℂn

⟨u ⊗ v | α̃(u ⊗ v)⟩ ≥ 0

α̃ = τ ∘ ∑
x,y

Dα(x, y)πx ⊗ π*y τ(u ⊗ v) = v ⊗ u

α ∈ L(Mn, Mn)
Dα

G α ∈ L(Mn, Mn)

∑
x

ω(x, g)Dα(x, xg) = δg,1 g ∈ G

 Semigroup of Quantum Maps 


We can identify any linear functional  on  with a sesquilinear form on  by 


 	 	 for .


So we can think of  as sesquilinear form on .


A sesquilinear form K on a coalgebra  is called conditionally positive if  
for all . If  is a cone inside  then  is called conditionally positive on the cone 

 if  for all 

Theorem:  Let  be a semigroup of linear maps on . Then  is completely positive if 

and only if  the sesquilinear form  with coefficient 


 


is conditionally positive. 


Theorem: Let  be a semigroup of linear maps on . Then  is k-positive if and only 
if 


 


is conditionally positive on the cone , where  is the cone of k-positive maps.


ϕ Mn ⊗ Mn Mn

⟨v, w⟩ϕ := ϕ(v ⊗ w̄) v, w ∈ Mn

Dα Mn ⊗ Mn

(V, Δ, δ) K(v, v) ≥ 0
v ∈ Ker(δ) C V K

C K(v, v) ≥ 0 v ∈ C ∩ Ker(δ) .

(αt)t≥0 Mn(ℂ) αt

K

K(x, y) =
d
dt

|t=0 Dαt
(x, y)

(αt)t≥0 Mn(ℂ) αt

K(x, y) =
d
dt

|t=0 Dαt
(x, y)

D(𝒫k)+ 𝒫k

Convenient Basis of 

Proposition: Let  be an index group with NEB . We define a linear map 

 for  by


 		 for any .


Then  is an ONB of .


Therefore any  can be decomposed 


.


Also we can express  as 





L(Mn, Mn)
G {πg : g ∈ G}

Tx,y : Mn(ℂ) ⟶ Mn(ℂ) x, y ∈ G

Tx,y(A) = πxAπ*y A ∈ Mn

{1/nTx,y : x, y ∈ G} L(Mn, Mn)

α ∈ L(Mn, Mn)

α(X) = ∑
x,y∈G

Dα(x, y)Tx,y(X) = ∑
x,y∈G

Dα(x, y)πxXπ*y

Dα

Dα(x, y) = 1/n2 ∑
g∈G

Tr(πyπ*g π*x α(πg)) .

If  is a NEB then . We have natural coalgebra structure on 

the dual  given by the comultiplication  and counit 


  and   .


 inherits the natural coalgebra structure of . For any two linear functional 
 we define the convolution product 


 


where  is the comultiplication on 


Consider the dual basis of  i.e. . We can identify  as a linear 

functional on the coalgebra   via





Then we have the following isomorphism between  and 


Proposition:  is an isomorphism i.e. 





{πg : g ∈ G} Mn = span{πg : g ∈ G}

M*n ΔM*n δM*n

ΔM*n (ϕ) = ϕ ∘ m δ(ϕ) = ϕ(Idn)

Mn ⊗ Mn Mn

ϕ, ψ ∈ (Mn ⊗ Mn)*

ϕ ⋆ ψ := (ϕ ⊗ ψ) ∘ ΔMn⊗M̄n

ΔMn⊗M̄n
Mn ⊗ Mn .

{1x : x ∈ G} Mn ⟨πx, 1y⟩ = δx,y Dα

Mn ⊗ Mn

Dα(1x ⊗ 1y) := Dα(x, y)

L(Mn, Mn) (Mn ⊗ Mn)*

D : L(Mn, Mn) ∋ α ↦ Dα ∈ (Mn ⊗ Mn)*

Dα∘β = Dα ⋆ Dβ .
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