The combinatorics of random tensors: from random geometry to strongly-coupled phenomena

Sylvain Carrozza

Radboud University 邹
Random Tensors at CIRM, Marseille March 14-18, 2022

LARGE-N EXPANSION

Scaling of bubbles and Feynman expansion governed by Gurau degree ω :

$$
\begin{aligned}
\mathcal{F}\left(\left\{\lambda_{\mathcal{B}}\right\}\right) & =\ln \int \mathrm{d} T \exp \left(-\bar{T} \cdot T+\sum_{\mathcal{B}} \lambda_{\mathcal{B}} N^{-\frac{2}{(D-2)!} \omega(\mathcal{B})} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)\right) \\
& =\sum_{\omega \in \mathbb{N}} N^{D-\frac{2}{(D-1)!} \omega} \mathcal{F}_{\omega}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)
\end{aligned}
$$

where

$$
\omega(\Delta)=D-n_{D-2}(\Delta)+\frac{D(D-1)}{4} n_{D}(\Delta)
$$

- $\omega \in \mathbb{N}$
- generalization of the genus: $D=2 \Rightarrow \omega=g$

LARGE-N EXPANSION

Scaling of bubbles and Feynman expansion governed by Gurau degree ω :

$$
\begin{aligned}
\mathcal{F}\left(\left\{\lambda_{\mathcal{B}}\right\}\right) & =\ln \int \mathrm{d} T \exp \left(-\bar{T} \cdot T+\sum_{\mathcal{B}} \lambda_{\mathcal{B}} N^{-\frac{2}{(D-2)!} \omega(\mathcal{B})} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)\right) \\
& =\sum_{\omega \in \mathbb{N}} N^{D-\frac{2}{(D-1)!} \omega} \mathcal{F}_{\omega}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)
\end{aligned}
$$

where

$$
\omega(\Delta)=D-n_{D-2}(\Delta)+\frac{D(D-1)}{4} n_{D}(\Delta)
$$

- $\omega \in \mathbb{N}$
- generalization of the genus: $D=2 \Rightarrow \omega=g$
- not a topological invariant of Δ when $D \geq 3$

LARGE-N EXPANSION

Scaling of bubbles and Feynman expansion governed by Gurau degree ω :

$$
\begin{aligned}
\mathcal{F}\left(\left\{\lambda_{\mathcal{B}}\right\}\right) & =\ln \int \mathrm{d} T \exp \left(-\bar{T} \cdot T+\sum_{\mathcal{B}} \lambda_{\mathcal{B}} N^{-\frac{2}{(D-2)!} \omega(\mathcal{B})} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)\right) \\
& =\sum_{\omega \in \mathbb{N}} N^{D-\frac{2}{(D-1)!} \omega} \mathcal{F}_{\omega}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)
\end{aligned}
$$

where

$$
\omega(\Delta)=D-n_{D-2}(\Delta)+\frac{D(D-1)}{4} n_{D}(\Delta)
$$

- $\omega \in \mathbb{N}$
- generalization of the genus: $D=2 \Rightarrow \omega=g$
- not a topological invariant of Δ when $D \geq 3$
- however: $\omega=0 \Rightarrow \Delta$ is a D-sphere

Botanical interlude: melon diagrams

Botanical interlude: Melon diagrams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

Botanical interlude: Melon diagrams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

Botanical interlude: Melon diagrams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

Botanical interlude: MELON DIAGRams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

Botanical interlude: Melon diagrams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

Botanical interlude: Melon diagrams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

LEADING ORDER

$$
\omega(\Delta)=0 \quad \Leftrightarrow \quad \Delta \text { is melonic }
$$

\rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$
G(\lambda)=1+\lambda G(\lambda)^{D+1} \quad \text { (Fuss-Catalan) }
$$

LEADING ORDER

$$
\omega(\Delta)=0 \quad \Leftrightarrow \quad \Delta \text { is melonic }
$$

\rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$
G(\lambda)=1+\lambda G(\lambda)^{D+1}
$$

(Fuss-Catalan)

Critical behaviour:

$$
\begin{aligned}
& G\left(\lambda_{c}\right)-G(\lambda) \underset{\lambda \rightarrow \lambda_{c}}{\sim} K\left(\lambda_{c}-\lambda\right)^{1 / 2} \\
\Leftrightarrow & \#\{\text { rooted melonic } \Delta\} \sim K \lambda_{c}^{-n_{\Delta}} n_{\Delta}-3 / 2
\end{aligned}
$$

Universal critical exponent $3 / 2$ associated to combinatorial trees.

Continuum limit

Melons are branched polymers
i.e. they converge to the continuous random tree [Aldous '91].

Credit: I. Kortchemski (https://igor-kortchemski.perso.math.cnrs.fr/images.html)

$$
\#\{\text { rooted melonic } \Delta\} \sim K \lambda_{c}^{-n_{\Delta}} n_{\Delta}^{-3 / 2}
$$

$$
d_{\text {spectral }}=4 / 3 \quad ; \quad \text { distance scale } \sim n_{\Delta}^{1 / 2} \quad \text { and } \quad d_{\text {Hausdorff }}=2
$$

\Rightarrow strong universality: limit independent of D !

Further results

- Combinatorial classification of graphs at order $\omega>0$: "it's melons all the way down".
[Gurau, Schaeffer '13]
- Double-scaling. [Bonzom, Gurau, Kaminski, Dartois, Oriti, Ryan, Tanasa '13 '14]
- Schwinger-Dyson eq. \rightarrow analogue of loop equations.
- Non-perturbative treatment.
- Applications in Group Field Theory:
[Boulatov, Ooguri, '92... Freidel, Gurau, Oriti '00s '10s...]
Melonic behaviour \Rightarrow rigorous renormalization theorems
[Ben Geloun, Rivasseau '11; SC, Oriti, Rivasseau '13;...]
[Review SC '16]

Beyond branched polymers?

No-go:

- Non-melonic large- N limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thüringen '17]
- Universality theorem: $D=3 \Rightarrow$ branched polymers for arbitrary spherical bubbles.
[Bonzom '18]

Beyond branched polymers?

No-go:

- Non-melonic large- N limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thüringen '17]
- Universality theorem: $D=3 \Rightarrow$ branched polymers for arbitrary spherical bubbles.

Yes go?

- D even \Rightarrow Brownian sphere, branched polymers and mixtures.
[Bonzom, Delpouve, Rivasseau '15]
- Simple combinatorial restrictions may change the universality class: branched polymers $\underset{2 \mathrm{PI}}{\longrightarrow}$ Ising on a random surface
[Benedetti, SC, Toriumi, Valette '20]

Beyond branched polymers?

No-go:

- Non-melonic large- N limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thüringen '17]
- Universality theorem: $D=3 \Rightarrow$ branched polymers for arbitrary spherical bubbles.

Yes go?

- D even \Rightarrow Brownian sphere, branched polymers and mixtures.
[Bonzom, Delpouve, Rivasseau '15]
- Simple combinatorial restrictions may change the universality class: branched polymers $\underset{2 \mathrm{PI}}{\longrightarrow}$ Ising on a random surface
[Benedetti, SC, Toriumi, Valette '20]
Major open question:
genuinely new random geometric phase suitable for QG in $D \geq 3$?
[Lionni, Marckert '19]

Summary

Tensor models for random geometry:

- well-defined generalization of the matrix models approach;
- reproduce previously known universality classes: continuous random tree, Brownian sphere, and mixtures;
- tend to be dominated by tree-like combinatorial species \Rightarrow no genuinely new universality class discovered so far...
...but a vast parameter space remains to be explored.

Entry points into the literature:

- "The Tensor Track" I-IV, Rivasseau, 2011-2016;
- "Random tensors", Gurau, 2016;
- "Colored Discrete Spaces", Lionni, 2018;
- "Combinatorial Physics", Tanasa, 2021.

Outline

Lecture 2

Colored $\mathrm{O}(N)$ models

The melonic limit as a window into strongly coupled physics

Irreducible random tensor ensembles

Outline

Colored $\mathrm{O}(N)$ models
The melonic limit as a window into strongly coupled physics
Irreducible random tensor ensembles

Random tensors

Space of tensors $T=T_{a_{1} \ldots a_{p}}, a_{i} \in\{1, \ldots, N\}$, equipped with measure of the form:

$$
\mathrm{d} \nu(T)=\mathrm{d} \mu_{\boldsymbol{P}}(T) \mathrm{e}^{-S_{N}(T)}
$$

- $\mathrm{d} \mu_{\boldsymbol{P}}$ is Gaussian with covariance \boldsymbol{P} :
- both P and S_{N} are invariant under the action of a unitary group: $\mathrm{O}(N), \mathrm{U}(N)$ or $\mathrm{Sp}(N)$.

What type of universal behaviour can we obtain in the asymptotic limit

$$
N \rightarrow \infty ?
$$

Colored $O(N)$ Models

$T_{a_{1} a_{2} \ldots a_{p}}$, in fundamental representation of $\mathrm{O}(N) \times \mathrm{O}(N) \times \cdots \times \mathrm{O}(N)$:

- $P_{a_{1} a_{2} \ldots a_{p}, b_{1} b_{2} \ldots b_{p}}=\delta_{a_{1} b_{1}} \delta_{a_{2}, b_{2}} \cdots \delta_{a_{p}, b_{p}}$

- $S_{N} \propto$ complete-graph interaction

Theorem: (Ferrari, Rivasseau, Valette '17)
A melonic large N limit exists for prime $p \geq 3$.

$$
p=3: \quad[\mathrm{SC}, \text { Tanasa '15] }
$$

Colored $O(N)$ Models

$$
(p=3) \quad \frac{\lambda}{N^{3 / 2}} T_{a e b} T_{c f b} T_{c e d} T_{a f d}
$$

- $A(G) \sim N^{-\omega}$ with $\omega=3+\frac{3}{2} V-F \geq 0$
- G leading order $\Leftrightarrow \omega=0 \Leftrightarrow G$ is a melon diagram

Idea of proof:

- Euler relation: $\omega:=g_{13}+g_{12}+g_{23} \in \frac{\mathbb{N}}{2}$, where $g_{i j}=$ genus of a ribbon diagram.

- Melons are "super-planar".

Colored $O(N)$ Models

$$
(p=3) \quad \frac{\lambda}{N^{3 / 2}} T_{a e b} T_{c f b} T_{c e d} T_{a f d}
$$

- $A(G) \sim N^{-\omega}$ with $\omega=3+\frac{3}{2} V-F \geq 0$
- G leading order $\Leftrightarrow \omega=0 \Leftrightarrow G$ is a melon diagram

Idea of proof:

- Euler relation: $\omega:=g_{13}+g_{12}+g_{23} \in \frac{\mathbb{N}}{2}$, where $g_{i j}=$ genus of a ribbon diagram.

- Melons are "super-planar".

Colored $O(N)$ Models

$$
(p=3) \quad \frac{\lambda}{N^{3 / 2}} T_{a e b} T_{c f b} T_{c e d} T_{a f d}
$$

- $A(G) \sim N^{-\omega}$ with $\omega=3+\frac{3}{2} V-F \geq 0$
- G leading order $\Leftrightarrow \omega=0 \Leftrightarrow G$ is a melon diagram

Idea of proof:

- Euler relation: $\omega:=g_{13}+g_{12}+g_{23} \in \frac{\mathbb{N}}{2}$, where $g_{i j}=$ genus of a ribbon diagram.

- Melons are "super-planar".

Local Vs bilocal structures

Local Vs bilocal structures

Outline

Colored $\mathrm{O}(N)$ models

The melonic limit as a window into strongly coupled physics

Irreducible random tensor ensembles

Three generic families of large N limits

Vector field $\phi_{a}(x)$

$$
\frac{\lambda}{N}\left(\phi_{a} \phi_{a}\right)^{2}
$$

Bubble diagrams

Easy

Tensor field $T_{a b c}(x)$
$\frac{\lambda}{N^{3 / 2}} T_{a e b} T_{b f c} T_{c e d} T_{d f a}$

Melon diagrams

Tractable

Matrix field $M_{a b}(x)$
${ }_{N}^{\lambda} M_{a b} M_{b c} M_{c d} M_{d a}$

Planar diagrams

Hard

Three generic families of large N limits

Vector field $\phi_{a}(x)$

$$
\frac{\lambda}{N}\left(\phi_{a} \phi_{a}\right)^{2}
$$

Bubble diagrams

Easy

Tensor field $T_{a b c}(x)$
$\frac{\lambda}{N^{3 / 2}} T_{a e b} T_{b f c} T_{c e d} T_{d f a}$

Melon diagrams

Tractable

Matrix field $M_{a b}(x)$
${ }_{N}^{\lambda} M_{a b} M_{b c} M_{c d} M_{d a}$

Planar diagrams

Hard

Three generic families of large N limits

Vector field $\phi_{a}(x)$

$$
\frac{\lambda}{N}\left(\phi_{a} \phi_{a}\right)^{2}
$$

Bubble diagrams

Easy

Tensor field $T_{a b c}(x)$
$\frac{\lambda}{N^{3 / 2}} T_{a e b} T_{b f c} T_{c e d} T_{d f a}$

Melon diagrams

Tractable

Matrix field $M_{a b}(x)$
${ }_{N}^{\lambda} M_{a b} M_{b c} M_{c d} M_{d a}$

Planar diagrams

Hard

Three generic families of large N limits

$$
\frac{\lambda}{N}\left(\phi_{a} \phi_{a}\right)^{2}
$$

Bubble diagrams

Easy

Tensor field $T_{a b c}(x)$

$\frac{\lambda}{N^{3 / 2}} T_{a e b} T_{b f c} T_{c e d} T_{d f a}$

Melon diagrams

Tractable

Matrix field $M_{a b}(x)$
$\frac{\lambda}{N} M_{a b} M_{b c} M_{c d} M_{d a}$

Planar diagrams

Hard

Melonic regime \Rightarrow closed and often solvable systems of Schwinger-Dyson equations, capturing bilocal effects.

Sachdev-Ye-Kitaev model

[Sachdev, Ye, Georges, Parcollet '90s...; Kitaev '15, Maldacena, Stanford, Polchinski, Rosenhaus...]

- Disordered system of N Majorana fermions ψ_{a} in $d=0+1$

$$
H \sim J_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d}, \quad\left\langle J_{a b c d}\right\rangle=0, \quad\left\langle J_{a b c d}^{2}\right\rangle \sim \frac{\lambda^{2}}{N^{3}}
$$

- Many interesting properties:
- solvable at large N
- emergent conformal symmetry at strong coupling
- same effective dynamics as Jackiw-Teitelboim 2D quantum gravity \rightarrow toy-models of quantum black holes
- maximal quantum chaos

Sachdev-Ye-Kitaev model

[Sachdev, Ye, Georges, Parcollet '90s...; Kitaev '15, Maldacena, Stanford, Polchinski, Rosenhaus...]

- Disordered system of N Majorana fermions ψ_{a} in $d=0+1$

$$
H \sim J_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d}, \quad\left\langle J_{a b c d}\right\rangle=0, \quad\left\langle J_{a b c d}^{2}\right\rangle \sim \frac{\lambda^{2}}{N^{3}}
$$

- Many interesting properties:
- solvable at large N
- emergent conformal symmetry at strong coupling
- same effective dynamics as Jackiw-Teitelboim 2D quantum gravity \rightarrow toy-models of quantum black holes
- maximal quantum chaos
- Same melonic large N limit as tensor models
\rightarrow SYK-like tensor quantum-mechanical models:
- same qualitative properties at large N and strong coupling;
- no disorder.

Klebanov-Tarnopolsky model

Tensor quantum mechanics of N^{3} Majorana fermions:
$S=\int d t\left(\frac{\mathrm{i}}{2} \psi_{i_{1} i_{2} i_{3}} \partial_{t} \psi_{i_{1} i_{2} i_{3}}+\frac{\lambda}{4 N^{3 / 2}} \psi_{i_{1} i_{2} i_{3}} \psi_{i_{4} i_{5} i_{3}} \psi_{i_{4} i_{2} i_{6}} \psi_{i_{1} i_{5} i_{6}}\right)>\lll \lll \lll \ll l$

Klebanov-Tarnopolsky model

Tensor quantum mechanics of N^{3} Majorana fermions:

$$
S=\int d t\left(\frac{\mathrm{i}}{2} \psi_{i_{1} i_{2} i_{3}} \partial_{t} \psi_{i_{1} i_{2} i_{3}}+\frac{\lambda}{4 N^{3 / 2}} \psi_{i_{1} i_{2} i_{3}} \psi_{i_{4} i_{5} i_{3}} \psi_{i_{4} i_{2} i_{6}} \psi_{i_{1} i_{5} i_{6}}\right) \quad \searrow
$$

- Melonic dominance at large $N \Rightarrow$ closed Schwinger-Dyson equation: [SC, Tanasa '15]

Klebanov-Tarnopolsky model

Tensor quantum mechanics of N^{3} Majorana fermions:

$$
S=\int d t\left(\frac{\mathrm{i}}{2} \psi_{i_{1} i_{2} i_{3}} \partial_{t} \psi_{i_{1} i_{2} i_{3}}+\frac{\lambda}{4 N^{3 / 2}} \psi_{i_{1} i_{2} i_{3}} \psi_{i_{4} i_{5} i_{3}} \psi_{i_{14} i_{1} i_{6}} \psi_{i_{1} i_{5} i_{6}}\right)
$$

- Melonic dominance at large $N \Rightarrow$ closed Schwinger-Dyson equation: [SC, Tanasa '15]

- SYK melonic equation: $\left\langle T\left(\psi_{a_{1} a_{2} a_{3}}\left(t_{1}\right) \psi_{b_{1} b_{2} b_{3}}\left(t_{2}\right)\right)\right\rangle \equiv G\left(t_{1}, t_{2}\right) \prod_{i=1}^{3} \delta_{a_{j}, b_{i}}$

$$
G\left(t_{1}, t_{2}\right)=G_{\text {free }}\left(t_{1}, t_{2}\right)+\lambda^{2} \int \mathrm{~d} t \mathrm{~d} t^{\prime} G_{\text {free }}\left(t_{1}, t\right)\left[G\left(t, t^{\prime}\right)\right]^{3} G\left(t^{\prime}, t_{2}\right)
$$

Strong-coupling Regime

$$
G\left(t_{1}, t_{2}\right)=G_{\text {free }}\left(t_{1}, t_{2}\right)+\lambda^{2} \int \mathrm{~d} t \mathrm{~d} t^{\prime} G_{\text {free }}\left(t_{1}, t\right)\left[G\left(t, t^{\prime}\right)\right]^{3} G\left(t^{\prime}, t_{2}\right)
$$

- At strong coupling:

$$
\lambda^{2} \int \mathrm{~d} t G\left(t_{1}, t\right)\left[G\left(t, t_{2}\right)\right]^{3}=-\delta\left(t_{1}-t_{2}\right)
$$

- Emergent conformal invariance: reparametrization $t \mapsto f(t)$

$$
G\left(t_{1}, t_{2}\right) \mapsto\left|f^{\prime}\left(t_{1}\right) f^{\prime}\left(t_{2}\right)\right|^{1 / 4} G\left(f\left(t_{1}\right), f\left(t_{2}\right)\right)
$$

- Symmetry breaking: f governed by same dynamics as boundary modes in Jackiw-Teitelboim 2D quantum gravity
\Rightarrow "near $\mathrm{AdS}_{2} /$ near CFT_{1} correspondence"
- solvable model of quantum black hole
- ~ topological recursion for Weil-Petersson volumes

Tensor field theory

Unlike SYK, tensor models naturally fit in the framework of local quantum field theory.

QFT generalization

Rely on tensor models to construct melonic theories in $d>1$.

Tensor field theory

Unlike SYK, tensor models naturally fit in the framework of local quantum field theory.

QFT generalization

Rely on tensor models to construct melonic theories in $d>1$.

Why it is interesting:

- only diagrams that proliferate are melons and ladder diagrams \Rightarrow explicit non-perturbative resummation sometimes possible
- melons are bi-local
\Rightarrow anomalous dimensions \Rightarrow non-trivial CFTs and RG flows
- 4-point functions $=$ sums of ladder diagrams
\Rightarrow non-perturbative access to the spectrum
\Rightarrow mathematically precise insights into strongly-coupled QFT.

Bosonic tensor field theory in $d<4$:

$$
\zeta=\frac{d}{4}
$$

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} \varphi_{a b c}(-\Delta)^{\zeta} \varphi_{a b c}+\frac{m^{2 \zeta}}{2} \varphi_{a b c} \varphi_{a b c} \\
& +\frac{i \lambda}{4 N^{3 / 2}} \longmapsto+\frac{\lambda_{P}}{4 N^{2}} \longmapsto+\frac{\lambda_{D}}{4 N^{3}} \longmapsto
\end{aligned}
$$

- Large- N melonic limit \Rightarrow explicit renormalization group flow to a unitary CFT in the IR:
[Benedetti, Gurau, Harribey, Suzuki '19; Benedetti, Gurau, Suzuki '20]

- Allows to test paradigms of QFT in rigorous set-ups
e.g. validity of F-theorem [Benedetti, Gurau, Harribey, Lettera '21]

Outline

Colored $\mathrm{O}(N)$ models
 The melonic limit as a window into strongly coupled physics

Irreducible random tensor ensembles

Generic tensors

Conjecture (Klebanov-Tarnopolsky '17)
For $p=3, \exists$ melonic large N limit for $\mathrm{O}(N)$ symmetric traceless tensors.

Evidence. Explicit numerical check of all diagrams up to order λ^{8}.
[Klebanov, Tarnopolsky, JHEP '17]

Proof and further generalizations.

1. $\mathrm{O}(N)$ irreducible, $p=3$
[Benedetti, SC, Gurau, Kolanowski, Commun. Math. Phys. '19; SC, JHEP '18]
2. $\operatorname{Sp}(N)$ irreducible, $p=3$ [SC, Pozsgay, Nucl. Phys. B '19]
3. $\mathrm{O}(N)$ irreducible, $p=5$ [SC, Harribey, Commun. Math. Phys. '22]

Much more involved and subtle constructions than in the colored case.

$\mathrm{O}(N)$ IRreducible models

Real p-index tensor $T_{a_{1} \ldots a_{p}}$, with p odd and measure of the form:

$$
\mathrm{d} \nu(T)=\mathrm{d} \mu_{\boldsymbol{P}}(T) \mathrm{e}^{-S_{N}(T)}
$$

- $\boldsymbol{P}=$ orthogonal projector on an irreducible representation of $\mathrm{O}(N)$;
- $S_{N}=-\frac{\lambda}{N \alpha} \operatorname{Inv}(T)$, where $\operatorname{Inv}(T)$ is a complete-graph invariant (graph K_{p+1}).

Do these models admit large N expansions? Are they melonic?

$\mathrm{O}(N)$ IRREDUCIble MODELS

Real p-index tensor $T_{a_{1} \ldots a_{p}}$, with p odd and measure of the form:

$$
\mathrm{d} \nu(T)=\mathrm{d} \mu_{P}(T) \mathrm{e}^{-S_{N}(T)}
$$

- $\boldsymbol{P}=$ orthogonal projector on an irreducible representation of $\mathrm{O}(N)$;
- $S_{N}=-\frac{\lambda}{N \alpha} \operatorname{Inv}(T)$, where $\operatorname{Inv}(T)$ is a complete-graph invariant (graph K_{p+1}).

Do these models admit large N expansions? Are they melonic?

IRREDUCIBLE TENSORS - PROPAGATOR

$\boldsymbol{P}=$ orthogonal projector on one of the irreducible tensor spaces.

| example: for traceless tensors with symmetry | 1 2
 |
| :--- | :--- | :--- |

IRreducible tensors - Feynman amplitudes

Vertex
\mathcal{G}

G

$$
\mathcal{F}_{N}(\lambda)=\sum_{\text {connected maps } \mathcal{G}} \frac{\lambda^{V(\mathcal{G})}}{s(\mathcal{G})} A(\mathcal{G})
$$

\mathcal{G} decomposes into up to $15^{E(\mathcal{G})}$ stranded graphs G :

$$
\begin{aligned}
& A(\mathcal{G})=\sum_{G} A(G), \quad A(G) \sim N^{-\omega(G)} \\
& \omega(G)=3+\frac{3}{2} V(G)+B(G)-F(G)
\end{aligned}
$$

$$
V=\#\{\text { vertices }\}, B=\#\{\text { broken edges }\}, F=\#\{\text { faces }\}
$$

$$
\begin{aligned}
& \overline{>} \ggg \gg \\
& \supsetneq \subset \ni \in \ni \subset \supset \subset \supset \subset \supset \in \supset \subset \text { (broken) }
\end{aligned}
$$

IRREDUCIble TENSORS - 5-INDEX TENSORS

$\overline{\overline{\bar{y}}} \geqslant$
 Unbroken

Broken
$\mathcal{\ni} \subseteq \mathcal{Y}$
Doubly-broken

Map \mathcal{G} decomposes into up to $945^{E(\mathcal{G})}$ stranded graphs G :

$$
\begin{gathered}
A(\mathcal{G})=\sum_{G} A(G), \quad A(G) \sim N^{-\omega(G)} \\
\omega(G)=5+5 V(G)+B_{1}(G)+2 B_{2}(G)-F(G)
\end{gathered}
$$

$$
B_{1}=\#\{\text { broken edges }\}, B_{2}=\#\{\text { doubly }- \text { broken edges }\}
$$

MAIN THEOREMS $\quad(p=5)$

$Z_{\boldsymbol{P}}(\lambda, N)=\int \mathrm{d} \mu_{\boldsymbol{P}} \exp \left(\frac{\lambda}{6 N^{5}} \longleftrightarrow\right) \quad F_{\boldsymbol{P}}(\lambda, N)=\frac{6}{N^{5}} \lambda \partial_{\lambda} \ln Z_{\boldsymbol{P}}(\lambda, N)$

Theorem 1 (SC, Harribey '21) In the sense of formal power series:

$$
F_{P}(\lambda, N)=\sum_{\omega \in \mathbb{N}} N^{-\omega} F_{P}^{(\omega)}(\lambda)
$$

Theorem 2 (SC, Harribey '21) For sufficiently small $\lambda, F_{P}^{(0)}(\lambda)$ is the unique continuous solution of the polynomial equation

$$
1-X+m_{P} \lambda^{2} X^{6}=0
$$

such that $F_{P}^{(0)}(0)=1$, and where m_{P} is a model-specific real constant.
Example. For the symmetric traceless and antisymmetric reps, $m_{P}=\left(\frac{1}{5!}\right)^{4}$.

PROOF STRATEGY

1. Eliminate melon and double-tadpole 2-point functions at the Feynman map level:

This is where the irreducibility assumption plays a crucial role.
2. Obtain \mathcal{G} with no melon and no double-tadpole.

$$
\text { Proposition: For any stranded configuration } G \text { of } \mathcal{G}, \omega(G) \geq 0 \text {. }
$$

Proof. Induction on $V=\#\{$ vertices $\}$. Conceptually straightforward but challenging by its complexity.

IDEA OF PROOF - COMBINATORIAL MOVES

Find local combinatorial moves that:

- decrease V;
- decrease ω;
- preserve constraints: connectedness, \emptyset melon, \emptyset double-tadpole.

IDEA OF PROOF - COMBINATORIAL MOVES

Find local combinatorial moves that:

- decrease V;
- decrease ω;
- preserve constraints: connectedness, \emptyset melon, \emptyset double-tadpole.

IDEA OF PROOF - COMBINATORIAL MOVES

Find local combinatorial moves that:

- decrease V;
- decrease ω;
- preserve constraints: connectedness, \emptyset melon, \emptyset double-tadpole.

IDEA OF PROOF - COMBINATORIAL MOVES

Find local combinatorial moves that:

- decrease V;
- decrease ω;
- preserve constraints: connectedness, \emptyset melon, \emptyset double-tadpole.

IDEA OF PROOF - COMBINATORIAL MOVES

Find local combinatorial moves that:

- decrease V;
- decrease ω;
- preserve constraints: connectedness, \emptyset melon, \emptyset double-tadpole.

IDEA OF PROOF - COMBINATORIAL MOVES

Find local combinatorial moves that:

- decrease V;
- decrease ω;
- preserve constraints: connectedness, \emptyset melon, \emptyset double-tadpole.

> End graphs

- Ring graphs $(V=0)$:

- G with no face of length 1 or $2 \Rightarrow \omega(G)>0$.
- Special cases that need to be treated separately.

IDEA OF PROOF - COMBINATORIAL MOVES

Find local combinatorial moves that:

- decrease V;
- decrease ω;
- preserve constraints: connectedness, \emptyset melon, \emptyset double-tadpole.

IDEA OF PROOF - BOUNDARY GRAPHS

IDEA OF PROOF - BOUNDARY GRAPHS

\longrightarrow

IDEA OF PROOF - BOUNDARY GRAPHS

One can recast recursive bounds on ω into bounds on flip distance between boundary graphs:

IDEA OF PROOF - BOUNDARY GRAPHS

One can recast recursive bounds on ω into bounds on flip distance between boundary graphs:

MAIN THEOREMS

$Z_{\boldsymbol{P}}(\lambda, N)=\int \mathrm{d} \mu_{\boldsymbol{P}} \exp \left(\frac{\lambda}{6 N^{5}}\right) \quad F_{\boldsymbol{P}}(\lambda, N)=\frac{6}{N^{5}} \lambda \partial_{\lambda} \ln Z_{\boldsymbol{P}}(\lambda, N)$

Theorem 1 (SC, Harribey '21) In the sense of formal power series:

$$
\checkmark \quad F_{P}(\lambda, N)=\sum_{\omega \in \mathbb{N}} N^{-\omega} F_{P}^{(\omega)}(\lambda)
$$

Theorem 2 (SC, Harribey '21) For sufficiently small $\lambda, F_{P}^{(0)}(\lambda)$ is the unique continuous solution of the polynomial equation

$$
1-X+m_{P} \lambda^{2} X^{6}=0
$$

such that $F_{P}^{(0)}(0)=1$, and where m_{P} is a model-specific real constant.
Example. For the symmetric traceless and antisymmetric reps, $m_{P}=\left(\frac{1}{5!}\right)^{4}$.

Melonic dominance

Proposition: \mathcal{G} is leading order $\Leftrightarrow \mathcal{G}$ is melonic.

Hallmark of melonic limit: the 2-point function verifies a closed SDE

MAIN THEOREMS

$Z_{\boldsymbol{P}}(\lambda, N)=\int \mathrm{d} \mu_{\boldsymbol{P}} \exp \left(\frac{\lambda}{6 N^{5}}\right) \quad F_{\boldsymbol{P}}(\lambda, N)=\frac{6}{N^{5}} \lambda \partial_{\lambda} \ln Z_{\boldsymbol{P}}(\lambda, N)$

Theorem 1 (SC, Harribey '21) In the sense of formal power series:

$$
\checkmark \quad F_{P}(\lambda, N)=\sum_{\omega \in \mathbb{N}} N^{-\omega} F_{P}^{(\omega)}(\lambda)
$$

Theorem 2 (SC, Harribey '21) For sufficiently small $\lambda, F_{P}^{(0)}(\lambda)$ is the unique continuous solution of the polynomial equation

$$
\checkmark \quad 1-X+m_{P} \lambda^{2} X^{6}=0
$$

such that $F_{P}^{(0)}(0)=1$, and where m_{P} is a model-specific real constant.
Example. For the symmetric traceless and antisymmetric reps, $m_{P}=\left(\frac{1}{5!}\right)^{4}$.

Summary

Tensor models for srongly-coupled quantum theory:

- melonic limit exended from colored to generic tensor ensembles;
- provides third generic family of large N theories, both rich and tractable;
- can reproduce SYK-like physics without disorder;
- generalize to QFT \rightarrow new family of large N QFTs which can be studied analytically.

Entry points into the literature:

- "TASI Lectures on Large N Tensor Models", Klebanov, Popov, Tarnopolsky, 2018;
- "The Tensor Track" V-VI, Rivasseau, Delporte, 2018-2020;
- "Notes on Tensor Models and Tensor Field Theories", Gurau, 2019;
- "Melonic CFTs", Benedetti, 2020.

