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LARGE—N EXPANSION [Gurau '11; Bonzom, Gurau, Rivasseau '12]

Scaling of bubbles and Feynman expansion governed by Gurau degree w:

f({)\B}) =In /dT exp (—T T+ Z A N—ﬁw(li) TFB(T, T)>

B

=3 NPT Fu (D))

weN

where [ w(A)=D — np_p(A) + WnD(A) }

» weN
» generalization of the genus: D=2 = w=g
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LARGE—N EXPANSION [Gurau '11; Bonzom, Gurau, Rivasseau '12]

Scaling of bubbles and Feynman expansion governed by Gurau degree w:

B

=3 NPT Fu (D))

weN

f({)\B}) =In /dT exp (—T T+ Z A5 N—ﬁw(li) TrB(T, T))

where [ w(A)=D — np_p(A) + WnD(A) }

» weN
» generalization of the genus: D=2 = w=g

» not a topological invariant of A when D >3
» however: w =0 = A is a D-sphere
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BOTANICAL INTERLUDE: MELON DIAGRAMS
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LEADING ORDER

[Bonzom, Gurau, RiELLO, Rivasseau '11;...]

w(A)=0 =3 A is melonic

— special triangulations of the D-sphere, with a
tree-like combinatorial structure.

Closed equation for their generating function:

[G()\) =1+ )\G(A)D“] (Fuss-Catalan)
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LEADING ORDER

Critical behaviour:

[Bonzom, Gurau, RiELLO, Rivasseau '11;...]

w(A)=0 & A is melonic

— special triangulations of the D-sphere, with a
tree-like combinatorial structure.

Closed equation for their generating function:

[G()\) =1+ )\G()\)D“] (Fuss-Catalan)

G(Ae) =G~ KA~ A2

& #{rooted melonic A} ~ KAZ"np~3/2

Universal critical exponent 3/2 associated to combinatorial trees.
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CONTINUUM LIMIT [Gurau, Rvan '13]

Melons are branched polymers
i.e. they converge to the continuous random tree [Aldous '91].

Credit: |. Kortchemski (https://igor—kortchemski.perso.math.cnrs.fr/images.html)

#{ rooted melonic A} ~ KAZ"np—3/2

1/2

Ospectral = 4/3| ;  distance scale ~ na and  dHausdorft = 2

= strong universality: limit independent of D!
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https://igor-kortchemski.perso.math.cnrs.fr/images.html

FURTHER RESULTS

» Combinatorial classification of graphs at order w > 0:
"it's melons all the way down". [Gurau, Schaeffer '13]

> Double—scaling. [Bonzom, Gurau, Kaminski, Dartois, Oriti, Ryan, Tanasa '13

'14]
» Schwinger-Dyson eq. — analogue of loop equations. [Gurau '11]
» Non-perturbative treatment. [Gurau '14]

» Applications in Group Field Theory:
[Boulatov, Ooguri, '92... Freidel, Gurau, Oriti '00s '10s...]

Melonic behaviour = rigorous renormalization theorems
[Ben Geloun, Rivasseau '11; SC, Oriti, Rivasseau '13;...]
[Review SC '16]
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BEYOND BRANCHED POLYMERS?

No-go:
» Non-melonic large-/V limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thiiringen '17]

» Universality theorem: D = 3 = branched polymers for arbitrary
spherical bubbles. [Bonzom '18]
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[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thiiringen '17]

» Universality theorem: D = 3 = branched polymers for arbitrary
spherical bubbles. [Bonzom '18]

Yes go?

» D even = Brownian sphere, branched polymers and mixtures.
[Bonzom, Delpouve, Rivasseau '15]

» Simple combinatorial restrictions may change the universality class:
branched polymers P Ising on a random surface
2

[Benedetti, SC, Toriumi, Valette '20]
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BEYOND BRANCHED POLYMERS?

No-go:
» Non-melonic large-/V limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thiiringen '17]

» Universality theorem: D = 3 = branched polymers for arbitrary
spherical bubbles. [Bonzom '18]

Yes go?
» D even = Brownian sphere, branched polymers and mixtures.
[Bonzom, Delpouve, Rivasseau '15]
» Simple combinatorial restrictions may change the universality class:
branched polymers H Ising on a random surface

[Benedetti, SC, Toriumi, Valette '20]
Major open question:

genuinely new random geometric phase suitable for QG in D > 37
[Lionni, Marckert '19]
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SUMMARY

Tensor models for random geometry:

» well-defined generalization of the matrix models approach;

» reproduce previously known universality classes: continuous random
tree, Brownian sphere, and mixtures;

» tend to be dominated by tree-like combinatorial species = no
genuinely new universality class discovered so far...

...but a vast parameter space remains to be explored.

Entry points into the literature:
» "The Tensor Track" |-V, Rivasseau, 2011-2016;
» "Random tensors", Gurau, 2016;
» "Colored Discrete Spaces", Lionni, 2018;
» "Combinatorial Physics", Tanasa, 2021.
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OUTLINE

Lecture 2

Colored O(N) models

The melonic limit as a window into strongly coupled physics

Irreducible random tensor ensembles

9/35




OUTLINE

Colored O(N) models
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RANDOM TENSORS

Space of tensors T =T, 5,, ai € {1,..., N}, equipped with measure of
the form:

dv(T) = dup(T)e M)

» dup is Gaussian with covariance P:

» both P and Sy are invariant under the action of a unitary group:
O(N), U(N) or Sp(N).

What type of universal behaviour can we obtain in the asymptotic limit
N—oo?
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COLORED O(N) MODELS

Tayas...a,, in fundamental representation of O(N) x O(N) x --- x O(N):

> Palaz...ap,blbz...bp - 5alb1632,b2 o 6&1,,,b,J

» Sy o complete-graph interaction

Ky (p=3) K¢ (p=5)
Theorem: (Ferrari, Rivasseau, Valette '17)
A melonic large N limit exists for prime p > 3.

p =3: [SC, Tanasa '15]
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COLORED O(N) MODELS [SC. Tanasa '15]

N
_ A Z,
(p - 3) N3/2 TaechbecedTafd >/x<
> A(G) ~ N withw =3+3V—-F>0
» G leading order & w =0 < G is a melon diagram

Idea of proof:

> Euler relation: w := gi3 + g1o + g23 € ), where g;; = genus of a
ribbon diagram.

g )

» Melons are "super-planar".
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LOCAL VS BILOCAL STRUCTURES
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OUTLINE

The melonic limit as a window into strongly coupled physics
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THREE GENERIC FAMILIES OF LARGE N LIMITS

(Vector field ¢,(x)] (Tensor field Tope(x)) (Matrix field M.p(x)]

2 (papa)? = Taeb Thrc Teed Taa 2MapMpcMcgMys,
X ML >7<
A\ N A~

Bubble diagrams Melon diagrams Planar diagrams

Easy Tractable Hard
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THREE GENERIC FAMILIES OF LARGE N LIMITS

(Vector field ¢,(x)] (Tensor field Tope(x)) (Matrix field M.p(x)]

%((ﬁag{)a)z #TaebbecTcedefa %MabecMchda
N N A
Bubble diagrams Melon diagrams Planar diagrams
Easy Tractable Hard

Melonic regime = closed and often solvable systems of Schwinger-Dyson

equations, capturing bilocal effects.
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SACHDEV-YE-KITAEV MODEL

[Sachdev, Ye, Georges, Parcollet '90s...; Kitaev '15, Maldacena, Stanford, Polchinski, Rosenhaus...]

» Disordered system of N Majorana fermions ¢, in d =0+ 1

H o Jovea Yo Wobe Yo, (Jabea) =0,  (S2y) ~ 2

» Many interesting properties:
» solvable at large N

P> emergent conformal symmetry at strong coupling

» same effective dynamics as Jackiw-Teitelboim 2D quantum gravity
— toy-models of quantum black holes

» maximal quantum chaos [Maldacena, Shenker, Stanford]
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[Sachdev, Ye, Georges, Parcollet '90s...; Kitaev '15, Maldacena, Stanford, Polchinski, Rosenhaus...]

» Disordered system of N Majorana fermions ¢, in d =0+ 1

H o Jovea Yo Wobe Yo, (Jabea) =0,  (S2y) ~ 2

» Many interesting properties:
» solvable at large N

P> emergent conformal symmetry at strong coupling

» same effective dynamics as Jackiw-Teitelboim 2D quantum gravity
— toy-models of quantum black holes

» maximal quantum chaos [Maldacena, Shenker, Stanford]

» Same melonic large N limit as tensor models [Witten '16]

— SYK-like tensor quantum-mechanical models:

» same qualitative properties at large N and strong coupling;

» no disorder.
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KLEBANOV—TARNOPOLSKY MODEL [KLEBANOV, TARNOPOLSKY '16]

Tensor quantum mechanics of N® Majorana fermions:

S—/dt <2¢1112'36t¢11lzl3+ 4N3/2¢’1’2’31/}’4’5’31/}’4’2’61/}’1’5’6) E >/X
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Tensor quantum mechanics of N® Majorana fermions:

i A \//
S= /dt <2¢i1i2i30t¢i1izi3 + 4/\/3/2¢i1/2i3¢i4i5i3'4/’,'4/2/61///1;5;6) E >/X

» Melonic dominance at large N = closed Schwinger-Dyson equation:
[SC, Tanasa '15]

oo Lol
g==p
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KLEBANOV—TARNOPOLSKY MODEL [KLEBANOV, TARNOPOLSKY '16]

Tensor quantum mechanics of N® Majorana fermions:

i A \//
S= /dt (21///1,'2;3@1/#1:'2;3 + 4N3/2¢i1/2i3¢i4i5i31/’,'4/2/61///1;5;6) E >/X

» Melonic dominance at large N = closed Schwinger-Dyson equation:
[SC, Tanasa '15]

oo Lol
g==p

» SYK melonic equation: (T (Yay apay (1) Py byby (2))) = G(t1, t2) [T, 82,0

[G(tl, t2) = Grree(t1, t2) + A? [ dtdt’ Gree(t1, t) [G(2, t')]* G(¢, tz)]
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STRONG-COUPLING REGIME

[G(tl, t2) = Grree(t1, t2) + A? [ dtdt’ Gree(t1, t) [G(2, t')]* G(¢, tz)]

» At strong coupling:

22 /dtG(tl, t)[G(t, )]} = —8(t; — to)

» Emergent conformal invariance: reparametrization t — f(t)
G(tr, o) = |f' () (82)M*G(F (1), f(22))

» Symmetry breaking: f governed by same dynamics as boundary
modes in Jackiw-Teitelboim 2D quantum gravity

= "near AdS, / near CFT; correspondence"
[Kitaev '15; Maldacena, Stanford; Gross, Rosenhaus;...]

» solvable model of quantum black hole
» ~ topological recursion for Weil-Petersson volumes
[Saad, Shenker, Stanford '19; Mirzakhani '07; Eynard-Orantin '07]

ds? = dp? + sinh’p dr?
19/35




TENSOR FIELD THEORY

Unlike SYK, tensor models naturally fit in the framework of local
quantum field theory.

QFT generalization

Rely on tensor models to construct melonic theories in d > 1.
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TENSOR FIELD THEORY

Unlike SYK, tensor models naturally fit in the framework of local
quantum field theory.

QFT generalization

Rely on tensor models to construct melonic theories in d > 1.

Why it is interesting:

» only diagrams that proliferate are melons and ladder diagrams
= explicit non-perturbative resummation sometimes possible

» melons are bi-local
= anomalous dimensions = non-trivial CFTs and RG flows

» 4-point functions = sums of ladder diagrams

= non-perturbative access to the spectrum

= mathematically precise insights into strongly-coupled QFT.
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LONG—RANGE BOSONIC MODELS [BENEDETTI, GURAU, HARRIBEY '19]

Bosonic tensor field theory in d < 4: (=4
1 m>¢
L= E(Pabc(_A)c‘pabc + T(Pabc(pabc
+ L + >\_P + A_D
4N3/2 4N2 N3 =,

» Large-/N melonic limit = explicit renormalization group flow to a
unitary CFT in the IR:
[Benedetti, Gurau, Harribey, Suzuki '19; Benedetti, Gurau, Suzuki '20]
IR

» Allows to test paradigms of QFT in rigorous set-ups

e.g. validity of F-theorem [Benedetti, Gurau, Harribey, Lettera '21]
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OUTLINE

Irreducible random tensor ensembles
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GENERIC TENSORS

Conjecture (Klebanov—Tarnopolsky '17)

For p = 3, 3 melonic large N limit for O(N) symmetric traceless tensors.

Evidence. Explicit numerical
check of all diagrams up to order
X8,

[Klebanov, Tarnopolsky, JHEP '17]

Proof and further generalizations.
1. O(N) irreducible, p =3
[Benedetti, SC, Gurau, Kolanowski, Commun. Math. Phys. '19; SC, JHEP 18]
2. Sp(N) irreducible, p =3 [SC, Pozsgay, Nucl. Phys. B '19]
3. O(N) irreducible, p =5 [SC, Harribey, Commun. Math. Phys. '22]

Much more involved and subtle constructions than in the colored case.
23/35




O(N) IRREDUCIBLE MODELS

Real p-index tensor T, ,,, with p odd and measure of the form:
dy(T) = dup(T)e M7

» P = orthogonal projector on an irreducible representation of O(N);
» Sy = —25Iny(T), where Inv(T) is a complete-graph invariant
(graph Kpi1).

Do these models admit large NV expansions? Are they melonic?
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IRREDUCIBLE TENSORS — PROPAGATOR

P = orthogonal projector on one of the irreducible tensor spaces.

example: for traceless tensors with symmetry

o=

=
N TN N N N

+ o+ o+ +

T(L|a2a3—Tb\b2b3 - a

1

2]

a— 1
ap———by

03

K

N—r N N N
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IRREDUCIBLE TENSORS — FEYNMAN AMPLITUDES

Vertex Propagator

o X —

G >\//< el (unbroken)
//\ 2SS 26 2E 3= € O 35 € S < (broken)

AV(©9)

Frn(X) = Z

connected maps G

A9)

G decomposes into up to 155(9) stranded graphs G:

AG) =Y AG),  A(G)~ N~¥©)
G
w(G) =3+ gV(G) + B(G) — F(G)

V = #{vertices}, B = #{broken edges}, F = #{faces}
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IRREDUCIBLE TENSORS — 5-INDEX TENSORS

o C o C (e
p— [ o C (e

Unbroken Broken Doubly-broken

Map G decomposes into up to 9455(9) stranded graphs G:

AG) =Y AG),  A(G) ~ N~¥©)

w(G) =5+5V(G) + B1(G) + 2B»(G) — F(G)

Bi = #{broken edges}, B, = #{doubly — broken edges}
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MAIN THEOREMS  (p=5)

Zp(\, N) = /d,u,p exp <6>\N5§§> Fe(X N) = %A@,\ InZp(X, N)

Theorem 1 (SC, Harribey '21) In the sense of formal power series:

Fo(A N) =Y N7“FEI()
weN

Theorem 2 (SC, Harribey '21) For sufficiently small X, F,(,O)()\) is the unique
continuous solution of the polynomial equation

1— X+ mpX°X®=0

such that F,E,O)(O) =1, and where mp is a model-specific real constant.

Example. For the symmetric traceless and antisymmetric reps, mp = (%)4.
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PROOF STRATEGY

1. Eliminate melon and double-tadpole 2-point functions at the
Feynman map level:

ool — e

This is where the irreducibility assumption plays a crucial role.

2. Obtain G with no melon and no double-tadpole.

[ Proposition:  For any stranded configuration G of G, w(G) > 0. )

Proof. Induction on V = #{vertices}. Conceptually straightforward but
challenging by its complexity.
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IDEA OF PROOF — COMBINATORIAL MOVES

Find local combinatorial moves that:
» decrease V;
» decrease w;
» preserve constraints: connectedness, ) melon, @ double-tadpole.
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IDEA OF PROOF — COMBINATORIAL MOVES

Find local combinatorial moves that:
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1 5

3 7
‘4/’/\‘\8‘
S B ) C 3 @
ros o 2 &

w o
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IDEA OF PROOF — COMBINATORIAL MOVES

Find local combinatorial moves that:
» decrease V;

» decrease w;
» preserve constraints: connectedness, ) melon, @ double-tadpole.

c d r z

T a z /y t
, A <

T z

DG
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IDEA OF PROOF — COMBINATORIAL MOVES

Find local combinatorial moves that:
» decrease V;
» decrease w;
» preserve constraints: connectedness, ) melon, @ double-tadpole.

T y T —
z w v w
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IDEA OF PROOF — COMBINATORIAL MOVES

Find local combinatorial moves that:
» decrease V;
» decrease w;
» preserve constraints: connectedness, ) melon, @ double-tadpole.

End graphs

» Ring graphs (V = 0):

» G with no face of length 1 or 2 = w(G) > 0.

» Special cases that need to be treated separately.
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IDEA OF PROOF — COMBINATORIAL MOVES

Find local combinatorial moves that:
» decrease V;
» decrease w;
» preserve constraints: connectedness, ) melon, @ double-tadpole.

— = Y & 3§
s A eV

<> B O
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IDEA OF PROOF — BOUNDARY GRAPHS
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IDEA OF PROOF — BOUNDARY GRAPHS

1 3
—
a (_\
L]
2 4

“\2/\/\4/“3
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IDEA OF PROOF — BOUNDARY GRAPHS
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IDEA OF PROOF — BOUNDARY GRAPHS

One can recast recursive bounds on w into bounds on flip distance
between boundary graphs:

1 3
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MAIN THEOREMS

Zp(\, N) = /d,u,p exp (&gg) Fe(X N) = %A@,\ InZp(X, N)

Theorem 1 (SC, Harribey '21) In the sense of formal power series:

v RGN =Y NRR)

w€eN

Theorem 2 (SC, Harribey '21) For sufficiently small X, F,(,O)()\) is the unique
continuous solution of the polynomial equation

1— X+ mpX°X®=0

such that F,E,O)(O) =1, and where mp is a model-specific real constant.

Example. For the symmetric traceless and antisymmetric reps, mp = (%)4.
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MELONIC DOMINANCE

[Proposition: G is leading order < G is melonic. J

Hallmark of melonic limit: the 2-point function verifies a closed SDE

@ = — + ®

(i

= F,(,O) is a solution of the polynomial equation

1—X+mpXX®=0
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MAIN THEOREMS

Zp(\, N) = /d,u,p exp (&gg) Fe(X N) = %A@,\ InZp(X, N)

Theorem 1 (SC, Harribey '21) In the sense of formal power series:

v RGN =Y NRR)

w€eN

Theorem 2 (SC, Harribey '21) For sufficiently small X, F,(,O)()\) is the unique
continuous solution of the polynomial equation

v 1—X+mpX°X®=0

such that F,E,O)(O) =1, and where mp is a model-specific real constant.

Example. For the symmetric traceless and antisymmetric reps, mp = (%)4.
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SUMMARY

Tensor models for srongly-coupled quantum theory:

» melonic limit exended from colored to generic tensor ensembles;

» provides third generic family of large N theories, both rich and
tractable;

» can reproduce SYK-like physics without disorder;

» generalize to QFT — new family of large N QFTs which can be
studied analytically.

Entry points into the literature:

» "TASI Lectures on Large N Tensor Models", Klebanov, Popov,
Tarnopolsky, 2018;

"The Tensor Track" V-VI, Rivasseau, Delporte, 2018-2020;

» '"Notes on Tensor Models and Tensor Field Theories", Gurau, 2019;
» "Melonic CFTs", Benedetti, 2020.

v
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