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RANDOM TENSORS

Space of tensors T =T, a,, ai € {1,..., N}, equipped with measure of
the form:

dv(T) = dup(T)e M)
» dup is Gaussian with covariance P:
/dNP(T)Tal...aprl...bp =Pa. a,br..b,
» both P and Sy are invariant under the action of a product of unitary

groups: O(N), U(N) or Sp(N).

What type of universal behaviour can we obtain in the asymptotic limit
N —oo?
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LARGE N EXPANSION: BASIC IDEA

F\N) =1n </ d,LP(T)e—NzInV(T))

Main steps:

1. Formal perturbative expansion in \.

= combinatorial interpretation: sum over Feynman graphs
2. Find o such that a 1//V expansion exists.
3. Resum F, ().

4. Non-perturbative analysis of 1/N expansion.
(won't be discussed in these lectures)
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LARGE N EXPANSION: BASIC IDEA

FAN) =In </ duP(T)e—N*aInv(T))
—2\)\V(©G)
) (sym)(G)A(G)

graph G

=Y N “F,(\)

weN
Main steps:
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LARGE N EXPANSION: MAIN APPLICATIONS

» Matrix models

» Random surfaces / 2D quantum gravity from matrix integrals.
» Large N limit as an approximation tool in quantum (field) theory.

» Tensor models

» Random geometry / quantum gravity in D > 3.
P> New generic class of large N theories: more solvable than matrix
theories, but still physically interesting.
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TENSORS AND INVARIANTS

Real symmetric tensor:

Ta1a2~~ap =
ai az Qap

Connected invariants:

C

E::iizl TopeTeqe = ///7r___wc\\\

a

b

d

€

5/37




TENSORS AND INVARIANTS

Real symmetric tensor:

Tala&‘”ap =
ai az Qap

Connected invariants:

p=1

C

25:1 TabeTede = ﬂ

a b d e

— (6297)

5/37




TENSORS AND INVARIANTS
Real symmetric tensor:
c
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TENSORS AND INVARIANTS
Real symmetric tensor:
c

Ta1a2map = A Zivzl TabeTede = ﬂ

ai as Gp a b d e

Connected invariants:

O W
> YV - el

#{invariants of order 2n} ~ (3)" n!

= Rapid growth of theory space for p > 3:
» large N behaviour explicitly depends on the combinatorial structure
of the invariants which contribute to the action;
» this dependence is hard to characterize in full generality.
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OUTLINE

Lecture 1

Large N expansion of matrix models

First generalization: complex colored tensor models

Random geometry applications

Lecture 2

Other ensembles of random tensors and QFT applications
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OUTLINE

Large N expansion of matrix models
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HERMITIAN MATRIX ENSEMBLE

1
Zy(\) = /H dM exp (/v <2Tr/\/l2 + %TrM“ +.. >)
N

(dM = Hk dek Hi<j dReM,-j dImM,-j)

» Basic question: determine expectation values of U(/V)-invariant
observables
(Tr(M™)Tr(M"™) ... Tr(M"™))

» Gaussian theory (A = 0): entirely determined by the propagator
Pt = (MyMeo = —— /dMe—%TrMZ MMy = ~5,16;
ij,kl -— ij'Vikl)0 — Z/\/(O) ij ikl — N i19jk

Higher order moments computed by Wick's theorem.

8/37




GAUSSIAN CORRELATORS

Graphical representation of

. 1 ;
» propagator: Pjjx = 70i10jk = }i}c

» interaction: NTrM* = N3, . MiiMjxcMigMj; =

T~

Jk

Invariant correlators — ribbon diagrams

NTrM*, =
< ' >0 Wick + T

=N<,b>2( N3 + N+ N

=2N?+1
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RIBBON DIAGRAMS

ribbon graph

~ combinatorial map

1R

12

e

~

1R

embedded graph
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RIBBON DIAGRAMS

ribbon graph ~ combinatorial map ~ embedded graph

QC@

1R

1R
S

Il
o

The weight / amplitude of an arbitrary ribbon graph only depends on the
topology of the surface it represents:

‘NV E+F _ X — N2e— Zg‘

V = #{vertices}, E = #{edges}, F = #{faces}.
g = genus, ¢ = #{connected components}.

10/37




TOPOLOGICAL EXPANSION OF MATRIX MODELS [+ Hoorr '74]

Zy(\) = /dM exp <—/v (;tr(/\/l2) + Ztr(l\/l“)))

ribbon graph G

¢ @ &

quandrangulation A
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TOPOLOGICAL EXPANSION OF MATRIX MODELS [+ Hoorr '74]

Zy(\) = /dM exp <—/v <;tr(/\/l2) + Ztr(M“)))

V(G
. (YO ) >
ribbon graph G S(G)

¢ @ &

Universal large- N expansion

22 : (=0
InZy(\) =D N*EF(N)  with  F(N)= > <0
g€eN G co&gﬁ:ted

g(G)=¢
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GENERALIZATIONS

» General potential: Tr(M*) — Tr(V(M))

Y
AN
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GENERALIZATIONS
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GENERALIZATIONS

» General potential: Tr(M*) — Tr(V(M)) ;{ \é

» [-ensembles:

1 .
Piji o< (}

» Hermitian models with U(N) symmetry (8 = 2)

2. .
L-a- Dot )

» Real symmetric matrix with O(/NV) symmetry (8 = 1).
» Quaternionic Hermitian matrix with Sp(/N) := U(2N) N Sp(2N, C)
symmetry (8 = 4).

= generate non-orientable surfaces.

a Rt

[Review: Eynard, Kimura, Ribault '15]
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APPLICATIONS OF THE LARGE N LIMIT
» Random surfaces and QG in D =2

Matrix integral at large N — statistical sum of

Feynman graphs ~ Euclidean space-time geometries

© &

Large number of fields/symmetries e.g. SU(3) — SU(N)

» perturbation theory in 1/N
» non-perturbative effects in coupling constants A

» Strongly-coupled QFT

Key probe of holographic dualities:

» gauge theory < Einstein gravity
» vector models < higher-spin gravity

What are tensor models good for in these two lines of thoughts?
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QG IN D =2 AS A MATRIX INTEGRAL

| M —N(%ter—itqu) A) = A\na
o famet i o gy =3

» Large-/N limit = generating function of planar g-angulations A,
weighted by na ~ area.

» Critical regime: X\ — A. = continuum limit.
» Double-scaling = non-trivial sum over topologies.
Universality: the distribution over 2d metrics converges to the Brownian

sphere in the continuum limit, independently of the details of the
potential (e.g. value of q).

— basic random geometry behind Liouville QG.
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BROWN'AN SPHERE [Le GALL, MiermoONT '13]

Credit: T. Budd (https://hef.ru.nl/"tbudd/gallery/)
#{ rooted planar A} ~ KAZ"np /2
Ospectral = 2 ;  distance scale ~ na'/*  and dHausdorft = 4
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https://hef.ru.nl/~tbudd/gallery/

QG IN D >3 AS A D-INDEX TENSOR INTEGRAL?

A\ N o/ \\
]:'()\) = In/dT exp <_TabcTabc + N TaebbecTcedefa> >/x/< v

[Ambjgrn, Durhuss, Jonsson '91; Gross '91; Sasakura '91;...]
» Challenges:

P interplay between combinatorics and topology: nice global properties
from local Feynman rules?

» large-N expansion?

» matrix techniques not available (spectral representation?)
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QG IN D >3 AS A D-INDEX TENSOR INTEGRAL?

A\ N o/ \\
]:'()\) = In/dT exp <_TabcTabc + N TaebbecTcedefa> >/x/< v

[Ambjgrn, Durhuss, Jonsson '91; Gross '91; Sasakura '91;...]

» Challenges:
P interplay between combinatorics and topology: nice global properties
from local Feynman rules?
» large-N expansion?
» matrix techniques not available (spectral representation?)

» Path to progress: [Gurau '09; Gurau, Rivasseau, Bonzom,... "10s]
» more symmetry: U(N)® — colored tensor models
» tractable combinatorics, mapping to sufficiently regular topological
spaces.

= universal large- N expansion, in any D > 3

indexed by Gurau degree w > 0
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OUTLINE

First generalization: complex colored tensor models
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COLORED TENSOR MODELS [Gurau '09]

Multipartite pure quantum state

‘\U> = Talaz---aD |31> ® |32> ® |aD>

a1,d2,.., ap

with a, € {1,..., N¢} .

» Entanglement structure characterized by local unitary (LU)
invariants:

U(Np) x U(Np) x -+ x U(Np)

» LU invariant (and normalized) random T, ,,. .,
~ distribution over multipartite pure state entanglement structures.

In the rest of the talk, take Ny = N > 1.
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COLORED TENSOR MODELS [Gurau '09]

Toranap = /W = Tarasap
al ag ap ap as ay

U(N)P invariants indexed by bubble diagrams B:

-2 <> [1{ )~
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COLORED TENSOR MODELS [Gurau '09]

Turasan = /TN /N = Tayanan
al ag ap ap as ay

U(N)P invariants indexed by bubble diagrams B:

oD S
e Ugzoa
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COLORED TENSOR MODELS [Gurau '09]

Toranap = /W = Tarasap
al ag ap ap as ay

U(N)P invariants indexed by bubble diagrams B:

oD S
e Ugzoa

Partition function:

F({xs}) = In/dT exp (T T+ %T%(T’ -,-))
B
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FEYNMAN GRAPHS
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FEYNMAN GRAPHS

1\ 0 O ~ J
L2 J2 L2 J2
9 23y ~
3 J3 -3 3TN
'_____..--------___..
] - Se
- - ~
~ L4 \ .
. A
. A
. A}
A 3 1
[y Tt '
G ' 1 ‘ 1
v 1 1
1 1
-~ -
Lemmmmm——
o4 L}
i [
.’
-
t=- .'----------’

V = #{vertices} ; p = #{propagators}
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FEYNMAN GRAPHS
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V = #{vertices} ; p = #{propagators}
Foj = #{faces of color (0j)}

A(G) o N2 Fo
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FEYNMAN GRAPHS
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V = #{vertices} ; p = #{propagators}

Foj = #{faces of color (0j)} ; Fij = #{faces of color (ij)}

A(G) o N2 Fo
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JACKETS

Colored graph + cyclic permutation ¢ on the colors

= combinatorial map J,, called jacket.

> < 7N N\

~

\

P
, N\
M
\ 7
<7

\
1
I
1

\ 7
) \

o =(0123) o’ =(0231)
Q(JU) =0 g(Jd’) =1

Jy~Jyr =3 % inequivalent choices of o.

E.g. 3 inequivalent jackets for D = 3.
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GURAU DEGREE

Definition Gurau degree of a (D + 1)-colored graph G:

D(D — 1)

w(G) = D~ F(6) + =——p(G)
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GURAU DEGREE

Definition Gurau degree of a (D + 1)-colored graph G:

w(G) =D — F(G) + MP(G)

Theorem (Gurau '11; Gurau, Rivasseau '11)

VG,  w(G)eN
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GURAU DEGREE

Definition Gurau degree of a (D + 1)-colored graph G:

w(G) =D — F(G) + wp(G)

Theorem (Gurau '11; Gurau, Rivasseau '11)

VG,  w(G)eN

Proof.

1
w(G) = m ;g(Ja)




LARGE—N EXPANSION [Gurau '11; Bonzom, Gurau, Rivasseau '12]

Scaling of bubbles and Feynman expansion governed by Gurau degree w:

F({s}) = |n/dT exp <—T-T—|— Z As N
B
= > NPT F ()

weN

oo @(B) Trs(T, T))

where [ w(G) = D — F(G) + 22-1(G) j

Generalization of the matrix genus expansion:

» weN
> D=2=w=g

Topological /geometric interpretation?
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TYPICAL QUESTIONS

» Combinatorial structure of leading-order graphs?
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» Nature of Fo({A\g}) ? Critical behaviour?
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TYPICAL QUESTIONS
» Combinatorial structure of leading-order graphs?
» Nature of Fo({Ap}) ? Critical behaviour?

» Optimal scalings:

Given a bubble B, what is the smallest o such that the interaction
A N~ Trp(T,T) preserves the existence of a large N limit?
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TYPICAL QUESTIONS
» Combinatorial structure of leading-order graphs?
» Nature of Fo({Ap}) ? Critical behaviour?

» Optimal scalings:

Given a bubble B, what is the smallest o such that the interaction
A N~ Trp(T,T) preserves the existence of a large N limit?

In contrast to random matrices, answering this question is hard.

0= <> [ )
o008 ® -
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OUTLINE

Random geometry applications
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COLORED TRIANGULATIONS

Theorem: [Pezzana '74]
D-colored graph < triangulation A of pseudo-manifold of dim. D — 1.

Colors — unambiguous identification of sub-simplices and their gluings.

» Bubble ~ D-colored graph ~ boundary of D-cell.

» Feynman graph ~ (D + 1)-colored graph ~ A of dimension D.
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D=2
Gluing of 2p-angles:

3—colored graph

node
line

bicolored cycle

[T11

colored triangulation
triangle
edge

vertex

Any orientable surface with boundaries can be represented by such a

3-colored graph.
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AN .
/2 K ran v

Topological singularities can be generated in D > 3:

K33

g(K33) =1 = boundary of a neighborhood not homeomorphic to a ball.

— (D + 1)-colored graphs are dual to pseudo-manifolds of dimension D.
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Jackets are dual to embedded quandrangulations in A.

(23)

(12)

o = (0123)

More precisely, J, encodes a Heegaard splitting of A.
[Ryan '11]
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DUALITY

Colored structure = unambiguous prescription for how to glue
D-simplices along their sub-simplices.

(D + 1)—colored graph +—  colored D—triangulation
node <+— D-—simplex

connected component with k colors  +— (D — k)—simplex

Essential in D > 3.

Crysta//isation theory [Cagliardi, Ferri et al. '80s; Gurau, Ryan '11]
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LARGE—N EXPANSION [Gurau '11; Bonzom, Gurau, Rivasseau '12]

Scaling of bubbles and Feynman expansion governed by Gurau degree w:

f({)\B}) =In /dT exp (—T T+ Z A N—ﬁw(li) TFB(T, T)>

B

=3 NPT Fu (D))

weN

where [ w(A)=D — np_p(A) + WnD(A) }

» weN
» generalization of the genus: D=2 = w=g
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LARGE—N EXPANSION [Gurau '11; Bonzom, Gurau, Rivasseau '12]

Scaling of bubbles and Feynman expansion governed by Gurau degree w:

B

=3 NPT Fu (D))

weN

f({)\B}) =In /dT exp (—T T+ Z A5 N—ﬁw(li) TrB(T, T))

where [ w(A)=D — np_p(A) + WnD(A) }

» weN
» generalization of the genus: D=2 = w=g

» not a topological invariant of A when D >3
» however: w =0 = A is a D-sphere
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BOTANICAL INTERLUDE: MELON DIAGRAMS
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LEADING ORDER

[Bonzom, Gurau, RiELLO, Rivasseau '11;...]

w(A)=0 =3 A is melonic

— special triangulations of the D-sphere, with a
tree-like combinatorial structure.

Closed equation for their generating function:

[G()\) =1+ )\G(A)D“] (Fuss-Catalan)

33/37




LEADING ORDER

Critical behaviour:

[Bonzom, Gurau, RiELLO, Rivasseau '11;...]

w(A)=0 & A is melonic

— special triangulations of the D-sphere, with a
tree-like combinatorial structure.

Closed equation for their generating function:

[G()\) =1+ )\G()\)D“] (Fuss-Catalan)

G(Ae) =G~ KA~ A2

& #{rooted melonic A} ~ KAZ"np~3/2

Universal critical exponent 3/2 associated to combinatorial trees.
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CONTINUUM LIMIT [Gurau, Rvan '13]

Melons are branched polymers
i.e. they converge to the continuous random tree [Aldous '91].

Credit: |. Kortchemski (https://igor—kortchemski.perso.math.cnrs.fr/images.html)

#{ rooted melonic A} ~ KAZ"np—3/2

1/2

Ospectral = 4/3| ;  distance scale ~ na and  dHausdorft = 2

= strong universality: limit independent of D!
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FURTHER RESULTS

» Combinatorial classification of graphs at order w > 0:
"it's melons all the way down". [Gurau, Schaeffer '13]

> Double—scaling. [Bonzom, Gurau, Kaminski, Dartois, Oriti, Ryan, Tanasa '13

'14]
» Schwinger-Dyson eq. — analogue of loop equations. [Gurau '11]
» Non-perturbative treatment. [Gurau '14]

» Applications in Group Field Theory:
[Boulatov, Ooguri, '92... Freidel, Gurau, Oriti '00s '10s...]

Melonic behaviour = rigorous renormalization theorems
[Ben Geloun, Rivasseau '11; SC, Oriti, Rivasseau '13;...]
[Review SC '16]
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BEYOND BRANCHED POLYMERS?

No-go:
» Non-melonic large-/V limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thiiringen '17]

» Universality theorem: D = 3 = branched polymers for arbitrary
spherical bubbles. [Bonzom '18]
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No-go:
» Non-melonic large-/V limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thiiringen '17]

» Universality theorem: D = 3 = branched polymers for arbitrary
spherical bubbles. [Bonzom '18]

Yes go?

» D even = Brownian sphere, branched polymers and mixtures.
[Bonzom, Delpouve, Rivasseau '15]

» Simple combinatorial restrictions may change the universality class:
branched polymers P Ising on a random surface
2

[Benedetti, SC, Toriumi, Valette '20]
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BEYOND BRANCHED POLYMERS?

No-go:
» Non-melonic large-/V limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thiiringen '17]

» Universality theorem: D = 3 = branched polymers for arbitrary
spherical bubbles. [Bonzom '18]

Yes go?
» D even = Brownian sphere, branched polymers and mixtures.
[Bonzom, Delpouve, Rivasseau '15]
» Simple combinatorial restrictions may change the universality class:
branched polymers H Ising on a random surface

[Benedetti, SC, Toriumi, Valette '20]
Major open question:

genuinely new random geometric phase suitable for QG in D > 37
[Lionni, Marckert '19]
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SUMMARY

Tensor models for random geometry:

» well-defined generalization of the matrix models approach;

» reproduce previously known universality classes: continuous random
tree, Brownian sphere, and mixtures;

» tend to be dominated by tree-like combinatorial species = no
genuinely new universality class discovered so far...

...but a vast parameter space remains to be explored.

Entry points into the literature:
» "Random tensors", Gurau, 2016;
» "The Tensor Track" |-V, Rivasseau, 2011-2016;
» "Colored Discrete Spaces", Lionni, 2018.
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