The combinatorics of random tensors: from random geometry to strongly-coupled phenomena

Sylvain Carrozza

Radboud University 邹
Random Tensors at CIRM, Marseille March 14-18, 2022

Random tensors

Space of tensors $T=T_{a_{1} \ldots a_{p}}, a_{i} \in\{1, \ldots, N\}$, equipped with measure of the form:

$$
\mathrm{d} \nu(T)=\mathrm{d} \mu_{\boldsymbol{P}}(T) \mathrm{e}^{-S_{N}(T)}
$$

- $\mathrm{d} \mu_{P}$ is Gaussian with covariance P :

$$
\int \mathrm{d} \mu_{P}(T) T_{a_{1} \ldots a_{p}} T_{b_{1} \ldots b_{p}}=P_{a_{1} \ldots a_{p}, b_{1} \ldots b_{p}}
$$

- both P and S_{N} are invariant under the action of a product of unitary groups: $\mathrm{O}(N), \mathrm{U}(N)$ or $\mathrm{Sp}(N)$.

What type of universal behaviour can we obtain in the asymptotic limit

$$
N \rightarrow \infty ?
$$

LARGE N EXPANSION: BASIC IDEA

$$
\mathcal{F}(\lambda, N)=\ln \left(\int \mathrm{d} \mu_{\boldsymbol{P}}(T) \mathrm{e}^{-\frac{\lambda}{N \alpha} \operatorname{Inv}(T)}\right)
$$

Main steps:

1. Formal perturbative expansion in λ.
\Rightarrow combinatorial interpretation: sum over Feynman graphs
2. Find α such that a $1 / N$ expansion exists.
3. Resum $\mathcal{F}_{\omega}(\lambda)$.
4. Non-perturbative analysis of $1 / \mathrm{N}$ expansion. (won't be discussed in these lectures)

LARGE N EXPANSION: BASIC IDEA

$$
\begin{aligned}
\mathcal{F}(\lambda, N) & =\ln \left(\int \mathrm{d} \mu_{P}(T) \mathrm{e}^{-\frac{\lambda}{N^{\alpha}} \operatorname{Inv}(T)}\right) \\
& =\sum_{\text {graph } G} \frac{(-\lambda)^{V(G)}}{\operatorname{sym}(G)} \mathcal{A}(G)
\end{aligned}
$$

Main steps:

1. Formal perturbative expansion in λ.
\Rightarrow combinatorial interpretation: sum over Feynman graphs
2. Find α such that a $1 / N$ expansion exists.
3. Resum $\mathcal{F}_{\omega}(\lambda)$.
4. Non-perturbative analysis of $1 / \mathrm{N}$ expansion. (won't be discussed in these lectures)

LARGE N EXPANSION: BASIC IDEA

$$
\begin{aligned}
\mathcal{F}(\lambda, N) & =\ln \left(\int \mathrm{d} \mu_{\boldsymbol{P}}(T) \mathrm{e}^{-\frac{\lambda}{N^{\alpha}} \operatorname{Inv}(T)}\right) \\
& =\sum_{\operatorname{graph} G} \frac{(-\lambda)^{V(G)}}{\operatorname{sym}(G)} \mathcal{A}(G) \\
& =\sum_{\omega \in \mathbb{N}} N^{-\omega} \mathcal{F}_{\omega}(\lambda)
\end{aligned}
$$

Main steps:

1. Formal perturbative expansion in λ.
\Rightarrow combinatorial interpretation: sum over Feynman graphs
2. Find α such that a $1 / N$ expansion exists.
3. Resum $\mathcal{F}_{\omega}(\lambda)$.
4. Non-perturbative analysis of $1 / \mathrm{N}$ expansion. (won't be discussed in these lectures)

LARGE N EXPANSION: MAIN APPLICATIONS

- Matrix models
- Random surfaces / 2D quantum gravity from matrix integrals.
- Large N limit as an approximation tool in quantum (field) theory.
- Tensor models
- Random geometry / quantum gravity in $D \geq 3$.
- New generic class of large N theories: more solvable than matrix theories, but still physically interesting.

TENSORS AND INVARIANTS

Real symmetric tensor:

Connected invariants:

Tensors and invariants

Real symmetric tensor:

Connected invariants:

$$
p=1 \quad \longleftrightarrow \quad\left(\phi_{a} \phi^{a}\right)
$$

Tensors and invariants

Real symmetric tensor:

$$
T_{a_{1} a_{2} \cdots a_{p}}=\bigwedge_{a_{1}} \bigwedge_{a_{2}}
$$

$$
\sum_{c=1}^{N} T_{a b c} T_{c d e}=\prod_{a}^{c} \prod_{d}
$$

Connected invariants:

$$
p=2
$$

$\left(\operatorname{tr}\left(M^{n}\right)\right)$

TENSORS AND INVARIANTS

Real symmetric tensor:

$$
T_{a_{1} a_{2} \cdots a_{p}}=\bigwedge_{a_{1}} \bigwedge_{a_{2}}
$$

$$
\sum_{c=1}^{N} T_{a b c} T_{c d e}=\prod_{a}^{c} \underbrace{}_{d}
$$

Connected invariants:

$$
p=3
$$

$\#\{$ invariants of order $2 n\} \sim\left(\frac{3}{2}\right)^{n} n!$
\Rightarrow Rapid growth of theory space for $p \geq 3$:

- large N behaviour explicitly depends on the combinatorial structure of the invariants which contribute to the action;
- this dependence is hard to characterize in full generality.

OutLine

Lecture 1

Large N expansion of matrix models

First generalization: complex colored tensor models

Random geometry applications

Lecture 2

Other ensembles of random tensors and QFT applications

Outline

Large N expansion of matrix models

First generalization: complex colored tensor models

Random geometry applications

HERMITIAN MATRIX ENSEMBLE

$$
\begin{aligned}
\mathcal{Z}_{N}(\lambda)=\int_{H_{N}} \mathrm{~d} M \exp (-N & \left.\left(\frac{1}{2} \operatorname{Tr} M^{2}+\frac{\lambda}{4} \operatorname{Tr} M^{4}+\ldots\right)\right) \\
& \left(\mathrm{d} M:=\prod_{k} \mathrm{~d} M_{k k} \prod_{i<j} \mathrm{dRe} M_{i j} \mathrm{dIm} M_{i j}\right)
\end{aligned}
$$

- Basic question: determine expectation values of $\mathrm{U}(\mathrm{N})$-invariant observables

$$
\left\langle\operatorname{Tr}\left(M^{n_{1}}\right) \operatorname{Tr}\left(M^{n_{2}}\right) \ldots \operatorname{Tr}\left(M^{n_{k}}\right)\right\rangle
$$

- Gaussian theory $(\lambda=0)$: entirely determined by the propagator

$$
P_{i j, k l}:=\left\langle M_{i j} M_{k l}\right\rangle_{0}=\frac{1}{\mathcal{Z}_{N}(0)} \int \mathrm{d} M \mathrm{e}^{-\frac{N}{2} \operatorname{Tr} M^{2}} M_{i j} M_{k l}=\frac{1}{N} \delta_{i l} \delta_{j k}
$$

Higher order moments computed by Wick's theorem.

GAUSSIAN CORRELATORS

Graphical representation of

- propagator: $\boldsymbol{P}_{i j, k l}=\frac{1}{N} \delta_{i l} \delta_{j k}=i{ }_{j}^{\longrightarrow} l$

Invariant correlators \rightarrow ribbon diagrams

Ribbon DIAGRAMS

$$
\text { ribbon graph } \simeq \text { combinatorial map } \simeq \text { embedded graph }
$$

Ribbon diagrams

ribbon graph \simeq combinatorial map \simeq embedded graph

The weight / amplitude of an arbitrary ribbon graph only depends on the topology of the surface it represents:

$$
\begin{aligned}
& N^{V-E+F}=N^{\chi}=N^{2 c-2 g} \\
& V=\#\{\text { vertices }\}, E=\#\{\text { edges }\}, F=\#\{\text { faces }\} \\
& g=\text { genus, } c=\#\{\text { connected components }\}
\end{aligned}
$$

TOPOLOGICAL EXPANSION OF MATRIX MODELS ['т Hооғт '74]

$$
\begin{aligned}
\mathcal{Z}_{N}(\lambda) & =\int \mathrm{d} M \exp \left(-N\left(\frac{1}{2} \operatorname{tr}\left(M^{2}\right)+\frac{\lambda}{4} \operatorname{tr}\left(M^{4}\right)\right)\right) \\
& =\sum_{\text {ribbon graph } G} \frac{(-\lambda)^{V(G)}}{s(G)} N^{\chi(G)}=\sum_{\text {quandrangulation } \Delta} \frac{(-\lambda)^{n(\Delta)}}{s(\Delta)} N^{\chi(\Delta)}
\end{aligned}
$$

TOPOLOGICAL EXPANSION OF MATRIX MODELS ['т Hоoft '74]

$$
\begin{aligned}
\mathcal{Z}_{N}(\lambda) & =\int \mathrm{d} M \exp \left(-N\left(\frac{1}{2} \operatorname{tr}\left(M^{2}\right)+\frac{\lambda}{4} \operatorname{tr}\left(M^{4}\right)\right)\right) \\
& =\sum_{\text {ribbon graph } G} \frac{(-\lambda)^{V(G)}}{s(G)} N^{\chi(G)}=\sum_{\text {quandrangulation } \Delta} \frac{(-\lambda)^{n(\Delta)}}{s(\Delta)} N^{\chi(\Delta)}
\end{aligned}
$$

Universal large- N expansion
$\ln \mathcal{Z}_{N}(\lambda)=\sum_{g \in \mathbb{N}} N^{2-2 g} \mathcal{F}_{g}(\lambda) \quad$ with $\quad \mathcal{F}_{g}(\lambda)=\sum_{\substack{G \text { connected } \\ g(G)=g}} \frac{(-\lambda)^{V(G)}}{s(G)}$

Generalizations

- General potential: $\operatorname{Tr}\left(M^{4}\right) \rightarrow \operatorname{Tr}(V(M))$

Generalizations

- General potential: $\operatorname{Tr}\left(M^{4}\right) \rightarrow \operatorname{Tr}(V(M))$
- β-ensembles:

$$
\boldsymbol{P}_{i j, k l} \propto \frac{1}{N}\left(\begin{array}{l}
i \\
j \\
k
\end{array}\right.
$$

Generalizations

- General potential: $\operatorname{Tr}\left(M^{4}\right) \rightarrow \operatorname{Tr}(V(M))$
- β-ensembles:

$$
\boldsymbol{P}_{i j, k l} \propto \frac{1}{N}\left(\begin{array}{l}
i \\
j \\
k
\end{array}\right.
$$

- Hermitian models with $\mathrm{U}(N)$ symmetry $(\beta=2)$

Generalizations

- General potential: $\operatorname{Tr}\left(M^{4}\right) \rightarrow \operatorname{Tr}(V(M))$
- β-ensembles:

$$
\boldsymbol{P}_{i j, k l} \propto \frac{1}{N}\left(\begin{array}{l}
i \\
j \\
k
\end{array}\right.
$$

- Hermitian models with $\mathrm{U}(N)$ symmetry $(\beta=2)$
- Real symmetric matrix with $\mathrm{O}(N)$ symmetry $(\beta=1)$.

Generalizations

- General potential: $\operatorname{Tr}\left(M^{4}\right) \rightarrow \operatorname{Tr}(V(M))$
- β-ensembles:

$$
\boldsymbol{P}_{i j, k l} \propto \frac{1}{N}\left(\begin{array}{l}
i \\
j \\
k
\end{array}\right.
$$

- Hermitian models with $\mathrm{U}(N)$ symmetry $(\beta=2)$
- Real symmetric matrix with $\mathrm{O}(N)$ symmetry $(\beta=1)$.
- Quaternionic Hermitian matrix with $\operatorname{Sp}(N):=\mathrm{U}(2 N) \cap \operatorname{Sp}(2 N, \mathbb{C})$ symmetry $(\beta=4)$.

Generalizations

- General potential: $\operatorname{Tr}\left(M^{4}\right) \rightarrow \operatorname{Tr}(V(M))$

- β-ensembles:

$$
\boldsymbol{P}_{i j, k l} \propto \frac{1}{N}\left(\begin{array}{l}
i \\
j \\
k
\end{array}\right.
$$

- Hermitian models with $\mathrm{U}(N)$ symmetry $(\beta=2)$
- Real symmetric matrix with $\mathrm{O}(N)$ symmetry $(\beta=1)$.
- Quaternionic Hermitian matrix with $\operatorname{Sp}(N):=\mathrm{U}(2 N) \cap \operatorname{Sp}(2 N, \mathbb{C})$ symmetry $(\beta=4)$.
\Rightarrow generate non-orientable surfaces.

Applications of the large N limit

- Random surfaces and QG in $D=2$

Matrix integral at large $N \rightarrow$ statistical sum of
Feynman graphs \simeq Euclidean space-time geometries

- Strongly-coupled QFT

Large number of fields/symmetries e.g. $\mathrm{SU}(3) \rightarrow \mathrm{SU}(N)$

- perturbation theory in $1 / \mathrm{N}$
- non-perturbative effects in coupling constants λ

Key probe of holographic dualities:

- gauge theory \leftrightarrow Einstein gravity
- vector models \leftrightarrow higher-spin gravity

What are tensor models good for in these two lines of thoughts?

QG in $D=2$ AS A MATRIX INTEGRAL

$$
\ln \int \mathrm{d} M e^{-N\left(\frac{1}{2} \operatorname{tr} M^{2}-\frac{\lambda}{q} \operatorname{tr} M^{q}\right)} \underset{N \rightarrow \infty}{\rightarrow} \mathcal{F}_{0}(\lambda)=\sum_{\Delta} \lambda^{n_{\Delta}}
$$

- Large- N limit \Rightarrow generating function of planar q-angulations Δ, weighted by $n_{\Delta} \sim$ area.
- Critical regime: $\quad \lambda \rightarrow \lambda_{c} \Rightarrow$ continuum limit.
- Double-scaling \Rightarrow non-trivial sum over topologies.

Universality: the distribution over 2d metrics converges to the Brownian sphere in the continum limit, independently of the details of the potential (e.g. value of q).
\rightarrow basic random geometry behind Liouville QG.

Brownian sphere

$$
\#\{\text { rooted planar } \Delta\} \sim K \lambda_{c}^{-n_{\Delta}} n_{\Delta}^{-5 / 2}
$$

$$
d_{\text {spectral }}=2 \quad ; \quad \text { distance scale } \sim n_{\Delta}^{1 / 4} \quad \text { and } \quad d_{\text {Hausdorff }}=4
$$

QG in $D \geq 3$ AS A D-INDEX TENSOR INTEGRAL?

$$
\begin{aligned}
\left.\mathcal{F}(\lambda)=\ln \int \mathrm{d} T \exp \left(-T_{a b c} T_{a b c}+\frac{\lambda}{N^{\alpha}} T_{a e b} T_{b f c} T_{c e d} T_{d f a}\right) \geqslant>\lll \ll\right]_{c} \\
\text { [Ambjørn, Durhuss, Jónsson '91; Gross '91; Sasakura '91;...] }
\end{aligned}
$$

- Challenges:
- interplay between combinatorics and topology: nice global properties from local Feynman rules?
- large- N expansion?
- matrix techniques not available (spectral representation?)

QG in $D \geq 3$ AS A D-INDEX TENSOR INTEGRAL?

$$
\mathcal{F}(\lambda)=\ln \int \mathrm{d} T \exp \left(-T_{a b c} T_{a b c}+\frac{\lambda}{N^{\alpha}} T_{a e b} T_{b f c} T_{c e d} T_{d f a}\right)
$$

[Ambjørn, Durhuss, Jónsson '91; Gross '91; Sasakura '91;...]

- Challenges:
- interplay between combinatorics and topology: nice global properties from local Feynman rules?
- large- N expansion?
- matrix techniques not available (spectral representation?)
- Path to progress:
[Gurau '09; Gurau, Rivasseau, Bonzom,... '10s]
- more symmetry: $\mathrm{U}(N)^{D} \rightarrow$ colored tensor models
- tractable combinatorics, mapping to sufficiently regular topological spaces.

$$
\begin{gathered}
\Rightarrow \text { universal large- } N \text { expansion, in any } D \geq 3 \\
\text { indexed by Gurau degree } \omega \geq 0
\end{gathered}
$$

Outline

Large N expansion of matrix models

First generalization: complex colored tensor models

Random geometry applications

Colored tensor models

Multipartite pure quantum state

$$
|\Psi\rangle=\sum_{a_{1}, a_{2}, \ldots, a_{D}} T_{a_{1} a_{2} \ldots a_{D}}\left|a_{1}\right\rangle \otimes\left|a_{2}\right\rangle \otimes \cdots \otimes\left|a_{D}\right\rangle
$$

with $a_{k} \in\left\{1, \ldots, N_{k}\right\}$.

- Entanglement structure characterized by local unitary (LU) invariants:

$$
\mathrm{U}\left(N_{1}\right) \times \mathrm{U}\left(N_{2}\right) \times \cdots \times \mathrm{U}\left(N_{D}\right)
$$

- LU invariant (and normalized) random $T_{a_{1} a_{2} \ldots a_{D}}$ \sim distribution over multipartite pure state entanglement structures.

In the rest of the talk, take $N_{k}=N \gg 1$.

Colored tensor models

$$
T_{a_{1} a_{2} \cdots a_{D}}=\bigcap_{a_{1}} \bigcap_{a_{2}} \quad \bigcap_{a_{D}} \cdots_{a_{2}}=\bar{T}_{a_{1} a_{2} \cdots a_{D}}
$$

$\mathrm{U}(N)^{D}$ invariants indexed by bubble diagrams \mathcal{B} :

$$
(D=2) \circlearrowleft \square<
$$

Colored tensor models

$T_{a_{1} a_{2} \cdots a_{D}}=\bigcap_{a_{1}} \bigcap_{a_{2}}$

$\mathrm{U}(N)^{D}$ invariants indexed by bubble diagrams \mathcal{B} :

Colored tensor models

$$
T_{a_{1} a_{2} \cdots a_{D}}=\bigcap_{a_{1}} \bigcap_{a_{2}} \bigcap_{a_{D}} \bigcap_{a_{2}}=\bar{T}_{a_{1} a_{2} \cdots a_{D}}
$$

$\mathrm{U}(N)^{D}$ invariants indexed by bubble diagrams \mathcal{B} :

Colored tensor models

$$
T_{a_{1} a_{2} \cdots a_{D}}=\overbrace{a_{1}} \prod_{a_{2}} \overbrace{a_{D}}=\bar{T}_{a_{1} a_{2} \cdots a_{D}}
$$

$\mathrm{U}(N)^{D}$ invariants indexed by bubble diagrams \mathcal{B} :

Partition function:

$$
\mathcal{F}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)=\ln \int \mathrm{d} T \exp \left(-\bar{T} \cdot T+\sum_{\mathcal{B}} \frac{\lambda_{\mathcal{B}}}{N^{\alpha(\mathcal{B})}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)\right)
$$

Feynman graphs

FEYNMAN GRAPHS

$V=\#\{$ vertices $\}$

FEYNMAN GRAPHS

$V=\#\{$ vertices $\} ; p=\#\{$ propagators $\}$

FEYNMAN GRAPHS

$V=\#\{$ vertices $\} ; p=\#\{$ propagators $\}$
$F_{0 \mathbf{j}}=\#\{$ faces of color ($\left.\mathbf{0} \mathbf{j})\right\}$

$$
\mathcal{A}(G) \propto N^{\sum_{j} F_{0 \mathrm{j}}}
$$

FEYNMAN GRAPHS

$V=\#\{$ vertices $\} ; p=\#\{$ propagators $\}$
$F_{0 \mathrm{j}}=\#\{$ faces of color $(\mathbf{0} \mathbf{j})\} ; F_{\mathrm{ij}}=\#\{$ faces of color $(\mathbf{i j})\}$

$$
\mathcal{A}(G) \propto N^{\sum_{j} F_{0 j}}
$$

JACKETS

Colored graph + cyclic permutation σ on the colors \Rightarrow combinatorial map J_{σ}, called jacket.

$$
\sigma^{\prime \prime}=(0213)
$$

$$
g\left(J_{\sigma^{\prime \prime}}\right)=0
$$

$J_{\sigma} \sim J_{\sigma^{-1}} \Rightarrow \exists \frac{D!}{2}$ inequivalent choices of σ.
E.g. 3 inequivalent jackets for $D=3$.

Gurau degree

Definition Gurau degree of a $(D+1)$-colored graph G :

$$
\omega(G)=D-F(G)+\frac{D(D-1)}{2} p(G)
$$

Gurau degree

Definition Gurau degree of a $(D+1)$-colored graph G :

$$
\omega(G)=D-F(G)+\frac{D(D-1)}{2} p(G)
$$

Theorem (Gurau '11; Gurau, Rivasseau '11)

$$
\forall G, \quad \omega(G) \in \mathbb{N}
$$

Gurau degree

Definition Gurau degree of a $(D+1)$-colored graph G :

$$
\omega(G)=D-F(G)+\frac{D(D-1)}{2} p(G)
$$

Theorem (Gurau '11; Gurau, Rivasseau '11)

$$
\forall G, \quad \omega(G) \in \mathbb{N}
$$

Proof.

$$
\omega(G)=\frac{1}{(D-1)!} \sum_{\sigma} g\left(J_{\sigma}\right)
$$

LARGE-N EXPANSION

Scaling of bubbles and Feynman expansion governed by Gurau degree ω :

$$
\begin{aligned}
\mathcal{F}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)= & \ln \int \mathrm{d} T \exp \left(-\bar{T} \cdot T+\sum_{\mathcal{B}} \lambda_{\mathcal{B}} N^{-\frac{2}{(D-2)!} \omega(\mathcal{B})} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)\right) \\
= & \sum_{\omega \in \mathbb{N}} N^{D-\frac{2}{(D-1)!} \omega} \mathcal{F}_{\omega}\left(\left\{\lambda_{\mathcal{B}}\right\}\right) \\
\text { where } & \quad \omega(G)=D-F(G)+\frac{D(D-1)}{2} p(G)
\end{aligned}
$$

Generalization of the matrix genus expansion:

- $\omega \in \mathbb{N}$
- $D=2 \Rightarrow \omega=g$

Topological/geometric interpretation?

TYpical questions

- Combinatorial structure of leading-order graphs?

TYpical questions

- Combinatorial structure of leading-order graphs?
- Nature of $\mathcal{F}_{0}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)$? Critical behaviour?

TYpical questions

- Combinatorial structure of leading-order graphs?
- Nature of $\mathcal{F}_{0}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)$? Critical behaviour?
- Optimal scalings:

Given a bubble \mathcal{B}, what is the smallest α such that the interaction $\lambda_{\mathcal{B}} N^{-\alpha} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)$ preserves the existence of a large N limit?

TYpICAL QUESTIONS

- Combinatorial structure of leading-order graphs?
- Nature of $\mathcal{F}_{0}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)$? Critical behaviour?
- Optimal scalings:

Given a bubble \mathcal{B}, what is the smallest α such that the interaction $\lambda_{\mathcal{B}} N^{-\alpha} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)$ preserves the existence of a large N limit?

In contrast to random matrices, answering this question is hard.

Outline

Large N expansion of matrix models

First generalization: complex colored tensor models

Random geometry applications

COLORED TRIANGULATIONS

($D=3$)

($D=4$)

Theorem:
[Pezzana '74]
D-colored graph \Leftrightarrow triangulation Δ of pseudo-manifold of $\operatorname{dim} . D-1$.
Colors \rightarrow unambiguous identification of sub-simplices and their gluings.

- Bubble $\simeq D$-colored graph \simeq boundary of D-cell.

- Feynman graph $\simeq(D+1)$-colored graph $\simeq \Delta$ of dimension D.

$D=2$

Gluing of $2 p$-angles:

Duality:

$$
\begin{aligned}
& \text { 3-colored graph } \longleftrightarrow \text { colored triangulation } \\
& \text { node } \longleftrightarrow \\
& \text { triangle } \\
& \text { line } \longleftrightarrow \\
& \text { edge } \\
& \text { bicolored cycle } \longleftrightarrow \\
& \text { vertex }
\end{aligned}
$$

Any orientable surface with boundaries can be represented by such a 3-colored graph.
$D=3$

$D=3$

$D=3$

$D=3$

$D=3$

$D=3$

Topological singularities can be generated in $D \geq 3$:

$g\left(K_{3,3}\right)=1 \Rightarrow$ boundary of a neighborhood not homeomorphic to a ball.
$\rightarrow(D+1)$-colored graphs are dual to pseudo-manifolds of dimension D.

$D=3$

Jackets are dual to embedded quandrangulations in Δ.

More precisely, J_{σ} encodes a Heegaard splitting of Δ.

DUALITY

Colored structure \Rightarrow unambiguous prescription for how to glue D-simplices along their sub-simplices.

$$
\begin{aligned}
(D+1) \text {-colored graph } & \longleftrightarrow \text { colored } D \text {-triangulation } \\
\text { node } & \longleftrightarrow D \text {-simplex } \\
\text { connected component with } k \text { colors } & \longleftrightarrow(D-k) \text {-simplex }
\end{aligned}
$$

Essential in $D \geq 3$.

($D=4$)

Crystallisation theory [Cagliardi, Ferri et al. '80s; Gurau, Ryan '11]

LARGE-N EXPANSION

Scaling of bubbles and Feynman expansion governed by Gurau degree ω :

$$
\begin{aligned}
\mathcal{F}\left(\left\{\lambda_{\mathcal{B}}\right\}\right) & =\ln \int \mathrm{d} T \exp \left(-\bar{T} \cdot T+\sum_{\mathcal{B}} \lambda_{\mathcal{B}} N^{-\frac{2}{(D-2)!} \omega(\mathcal{B})} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)\right) \\
& =\sum_{\omega \in \mathbb{N}} N^{D-\frac{2}{(D-1)!} \omega} \mathcal{F}_{\omega}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)
\end{aligned}
$$

where

$$
\omega(\Delta)=D-n_{D-2}(\Delta)+\frac{D(D-1)}{4} n_{D}(\Delta)
$$

- $\omega \in \mathbb{N}$
- generalization of the genus: $D=2 \Rightarrow \omega=g$

LARGE-N EXPANSION

Scaling of bubbles and Feynman expansion governed by Gurau degree ω :

$$
\begin{aligned}
\mathcal{F}\left(\left\{\lambda_{\mathcal{B}}\right\}\right) & =\ln \int \mathrm{d} T \exp \left(-\bar{T} \cdot T+\sum_{\mathcal{B}} \lambda_{\mathcal{B}} N^{-\frac{2}{(D-2)!} \omega(\mathcal{B})} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)\right) \\
& =\sum_{\omega \in \mathbb{N}} N^{D-\frac{2}{(D-1)!} \omega} \mathcal{F}_{\omega}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)
\end{aligned}
$$

where

$$
\omega(\Delta)=D-n_{D-2}(\Delta)+\frac{D(D-1)}{4} n_{D}(\Delta)
$$

- $\omega \in \mathbb{N}$
- generalization of the genus: $D=2 \Rightarrow \omega=g$
- not a topological invariant of Δ when $D \geq 3$

LARGE-N EXPANSION

Scaling of bubbles and Feynman expansion governed by Gurau degree ω :

$$
\begin{aligned}
\mathcal{F}\left(\left\{\lambda_{\mathcal{B}}\right\}\right) & =\ln \int \mathrm{d} T \exp \left(-\bar{T} \cdot T+\sum_{\mathcal{B}} \lambda_{\mathcal{B}} N^{-\frac{2}{(D-2)!} \omega(\mathcal{B})} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)\right) \\
& =\sum_{\omega \in \mathbb{N}} N^{D-\frac{2}{(D-1)!} \omega} \mathcal{F}_{\omega}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)
\end{aligned}
$$

where

$$
\omega(\Delta)=D-n_{D-2}(\Delta)+\frac{D(D-1)}{4} n_{D}(\Delta)
$$

- $\omega \in \mathbb{N}$
- generalization of the genus: $D=2 \Rightarrow \omega=g$
- not a topological invariant of Δ when $D \geq 3$
- however: $\omega=0 \Rightarrow \Delta$ is a D-sphere

Botanical interlude: melon diagrams

Botanical interlude: Melon diagrams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

Botanical interlude: Melon diagrams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

Botanical interlude: MELON DIAGRams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

Botanical interlude: MELON DIAGRams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

Botanical interlude: Melon diagrams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

Botanical interlude: Melon diagrams

Melonic theories \rightarrow Feynman expansion dominated by melon diagrams:

LEADING ORDER

$$
\omega(\Delta)=0 \quad \Leftrightarrow \quad \Delta \text { is melonic }
$$

\rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$
G(\lambda)=1+\lambda G(\lambda)^{D+1} \quad \text { (Fuss-Catalan) }
$$

LEADING ORDER

$$
\omega(\Delta)=0 \quad \Leftrightarrow \quad \Delta \text { is melonic }
$$

\rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$
G(\lambda)=1+\lambda G(\lambda)^{D+1}
$$

(Fuss-Catalan)

Critical behaviour:

$$
\begin{aligned}
& G\left(\lambda_{c}\right)-G(\lambda) \underset{\lambda \rightarrow \lambda_{c}}{\sim} K\left(\lambda_{c}-\lambda\right)^{1 / 2} \\
\Leftrightarrow \quad & \#\{\text { rooted melonic } \Delta\} \sim K \lambda_{c}^{-n_{\Delta}} n_{\Delta}^{-3 / 2}
\end{aligned}
$$

Universal critical exponent $3 / 2$ associated to combinatorial trees.

Continuum limit

Melons are branched polymers
i.e. they converge to the continuous random tree [Aldous '91].

Credit: I. Kortchemski (https://igor-kortchemski.perso.math.cnrs.fr/images.html)

$$
\#\{\text { rooted melonic } \Delta\} \sim K \lambda_{c}^{-n_{\Delta}} n_{\Delta}^{-3 / 2}
$$

$$
d_{\text {spectral }}=4 / 3 \quad ; \quad \text { distance scale } \sim n_{\Delta}^{1 / 2} \quad \text { and } \quad d_{\text {Hausdorff }}=2
$$

\Rightarrow strong universality: limit independent of D !

Further results

- Combinatorial classification of graphs at order $\omega>0$: "it's melons all the way down".
[Gurau, Schaeffer '13]
- Double-scaling. [Bonzom, Gurau, Kaminski, Dartois, Oriti, Ryan, Tanasa '13 '14]
- Schwinger-Dyson eq. \rightarrow analogue of loop equations.
- Non-perturbative treatment.
- Applications in Group Field Theory:
[Boulatov, Ooguri, '92... Freidel, Gurau, Oriti '00s '10s...]
Melonic behaviour \Rightarrow rigorous renormalization theorems
[Ben Geloun, Rivasseau '11; SC, Oriti, Rivasseau '13;...]
[Review SC '16]

Beyond branched polymers?

No-go:

- Non-melonic large- N limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thüringen '17]
- Universality theorem: $D=3 \Rightarrow$ branched polymers for arbitrary spherical bubbles.
[Bonzom '18]

Beyond branched polymers?

No-go:

- Non-melonic large- N limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thüringen '17]
- Universality theorem: $D=3 \Rightarrow$ branched polymers for arbitrary spherical bubbles.

Yes go?

- D even \Rightarrow Brownian sphere, branched polymers and mixtures.
[Bonzom, Delpouve, Rivasseau '15]
- Simple combinatorial restrictions may change the universality class: branched polymers $\underset{2 \mathrm{PI}}{\longrightarrow}$ Ising on a random surface
[Benedetti, SC, Toriumi, Valette '20]

Beyond branched polymers?

No-go:

- Non-melonic large- N limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thüringen '17]
- Universality theorem: $D=3 \Rightarrow$ branched polymers for arbitrary spherical bubbles.

Yes go?

- D even \Rightarrow Brownian sphere, branched polymers and mixtures.
[Bonzom, Delpouve, Rivasseau '15]
- Simple combinatorial restrictions may change the universality class: branched polymers $\underset{2 \mathrm{PI}}{\longrightarrow}$ Ising on a random surface
[Benedetti, SC, Toriumi, Valette '20]
Major open question:
genuinely new random geometric phase suitable for QG in $D \geq 3$?
[Lionni, Marckert '19]

Summary

Tensor models for random geometry:

- well-defined generalization of the matrix models approach;
- reproduce previously known universality classes: continuous random tree, Brownian sphere, and mixtures;
- tend to be dominated by tree-like combinatorial species \Rightarrow no genuinely new universality class discovered so far... ...but a vast parameter space remains to be explored.

Entry points into the literature:

- "Random tensors", Gurau, 2016;
- "The Tensor Track" I-IV, Rivasseau, 2011-2016;
- "Colored Discrete Spaces", Lionni, 2018.

