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Random tensors

Space of tensors T = Ta1:::ap , ai ∈ {1; : : : ; N}, equipped with measure of
the form:

d�(T ) = d—PPP (T )e−SN(T )

I d—PPP is Gaussian with covariance PPP :∫
d—PPP (T )Ta1:::apTb1:::bp = PPP a1:::ap ;b1:::bp

I both PPP and SN are invariant under the action of a product of unitary
groups: O(N), U(N) or Sp(N).

What type of universal behaviour can we obtain in the asymptotic limit
N →∞ ?
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Large N expansion: basic idea

F(–;N) = ln

(∫
d—PPP (T )e−

–
N¸ Inv(T )

)

Main steps:

1. Formal perturbative expansion in –.

⇒ combinatorial interpretation: sum over Feynman graphs

2. Find ¸ such that a 1=N expansion exists.

3. Resum F!(–).

4. Non-perturbative analysis of 1=N expansion.
(won't be discussed in these lectures)
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Large N expansion: main applications

I Matrix models

I Random surfaces / 2D quantum gravity from matrix integrals.
I Large N limit as an approximation tool in quantum (�eld) theory.

I Tensor models

I Random geometry / quantum gravity in D ≥ 3.
I New generic class of large N theories: more solvable than matrix

theories, but still physically interesting.
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Tensors and invariants
Real symmetric tensor:

· · ·
a1 a2 ap

Ta1a2···ap =
∑N

c=1 TabcTcde =
ba ed

c

Connected invariants:

#{invariants of order 2n} ∼
(

3
2

)n
n!

⇒ Rapid growth of theory space for p ≥ 3:

I large N behaviour explicitly depends on the combinatorial structure
of the invariants which contribute to the action;

I this dependence is hard to characterize in full generality.
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Outline

Lecture 1

Large N expansion of matrix models

First generalization: complex colored tensor models

Random geometry applications

Lecture 2

Other ensembles of random tensors and QFT applications
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Hermitian matrix ensemble

ZN(–) =

∫
HN

dM exp

(
−N

(
1

2
TrM2 +

–

4
TrM4 + : : :

))
(dM :=

∏
k dMkk

∏
i<j dReMi j dImMi j)

I Basic question: determine expectation values of U(N)-invariant
observables

〈Tr(Mn1 )Tr(Mn2 ) : : :Tr(Mnk )〉

I Gaussian theory (– = 0): entirely determined by the propagator

PPP i j;kl := 〈Mi jMkl〉0 =
1

ZN(0)

∫
dM e−

N
2 TrM2

Mi jMkl =
1

N
‹i l‹jk

Higher order moments computed by Wick's theorem.
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Gaussian correlators
Graphical representation of

I propagator: PPP i j;kl = 1
N
‹i l‹jk = i l

j k

I interaction: NTrM4 = N
∑

i ;j;k;l Mi jMjkMklMl i = i

i

j

j k

k
l

l

Invariant correlators → ribbon diagrams

〈NTrM4〉0 =
Wick

+ +

= N

(
1

N

)2 (
N3 + N3 + N

)
= 2N2 + 1
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Ribbon diagrams
ribbon graph ' combinatorial map ' embedded graph

' ' g = 0

' ' g = 1

The weight / amplitude of an arbitrary ribbon graph only depends on the
topology of the surface it represents:

NV−E+F = Nffl = N2c−2g

V = #{vertices} ; E = #{edges} ; F = #{faces} :
g = genus, c = #{connected components}.
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Topological expansion of matrix models [’t Hooft ’74]

ZN(–) =

∫
dM exp

(
−N

(
1

2
tr(M2) +

–

4
tr(M4)

))
=

∑
ribbon graph G

(−–)V (G)

s(G)
Nffl(G) =

∑
quandrangulation ∆

(−–)n(∆)

s(∆)
Nffl(∆)

Universal large-N expansion

lnZN(–) =
∑
g∈N

N2−2g Fg (–) with Fg (–) =
∑

G connected
g(G)=g

(−–)V (G)

s(G)

N2 + N0 + N−2 + N−4 + · · ·

11/37



Topological expansion of matrix models [’t Hooft ’74]

ZN(–) =

∫
dM exp

(
−N

(
1

2
tr(M2) +

–

4
tr(M4)

))
=

∑
ribbon graph G

(−–)V (G)

s(G)
Nffl(G) =

∑
quandrangulation ∆

(−–)n(∆)

s(∆)
Nffl(∆)

Universal large-N expansion

lnZN(–) =
∑
g∈N

N2−2g Fg (–) with Fg (–) =
∑

G connected
g(G)=g

(−–)V (G)

s(G)

N2 + N0 + N−2 + N−4 + · · ·

11/37



Generalizations

I General potential: Tr(M4)→ Tr(V (M)) · · ·

I ˛-ensembles:

PPP i j;kl ∝
1

N

(
i l
j k − (1− 2

˛
) i l
j k

)
I Hermitian models with U(N) symmetry (˛ = 2)

I Real symmetric matrix with O(N) symmetry (˛ = 1).

I Quaternionic Hermitian matrix with Sp(N) := U(2N) ∩ Sp(2N;C)
symmetry (˛ = 4).

⇒ generate non-orientable surfaces.

'

[Review: Eynard, Kimura, Ribault '15]
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Applications of the large N limit
I Random surfaces and QG in D = 2

Matrix integral at large N → statistical sum of

Feynman graphs ' Euclidean space-time geometries

'

I Strongly-coupled QFT

Large number of �elds/symmetries e.g. SU(3)→ SU(N)

I perturbation theory in 1=N
I non-perturbative e�ects in coupling constants –

Key probe of holographic dualities:

I gauge theory ↔ Einstein gravity
I vector models ↔ higher-spin gravity

What are tensor models good for in these two lines of thoughts?
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QG in D = 2 as a matrix integral

ln

∫
dM e−N( 1

2 trM2− –q trMq) →
N→∞

F0(–) =
∑

∆

–n∆
∆

I Large-N limit ⇒ generating function of planar q-angulations ∆,
weighted by n∆ ∼ area.

I Critical regime: –→ –c ⇒ continuum limit.

I Double-scaling ⇒ non-trivial sum over topologies.

Universality: the distribution over 2d metrics converges to the Brownian
sphere in the continuum limit, independently of the details of the
potential (e.g. value of q).

→ basic random geometry behind Liouville QG.
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Brownian sphere [Le Gall, Miermont ’13]

Credit: T. Budd (https://hef.ru.nl/~tbudd/gallery/)

#{ rooted planar ∆ } ∼ K–−n∆
c n∆

−5=2

dspectral = 2 ; distance scale ∼ n∆
1=4 and dHausdorff = 4
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QG in D ≥ 3 as a D-index tensor integral?

F(–) = ln

∫
dT exp

(
−TabcTabc +

–

N¸
TaebTbf cTcedTdf a

)
a

b
cd

e

f

[Ambjørn, Durhuss, Jónsson '91; Gross '91; Sasakura '91;...]

I Challenges:

I interplay between combinatorics and topology: nice global properties
from local Feynman rules?

I large-N expansion?
I matrix techniques not available (spectral representation?)

I Path to progress: [Gurau '09; Gurau, Rivasseau, Bonzom,... '10s]

I more symmetry: U(N)D → colored tensor models
I tractable combinatorics, mapping to su�ciently regular topological

spaces.�
�

�


⇒ universal large-N expansion, in any D ≥ 3

indexed by Gurau degree ! ≥ 0
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Outline

Large N expansion of matrix models

First generalization: complex colored tensor models

Random geometry applications

17/37



Colored tensor models [Gurau ’09]

Multipartite pure quantum state

|Ψ〉 =
∑

a1;a2;:::;aD

Ta1a2:::aD |a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |aD〉

with ak ∈ {1; : : : ; Nk}.

I Entanglement structure characterized by local unitary (LU)
invariants:

U(N1)× U(N2)× · · · × U(ND)

I LU invariant (and normalized) random Ta1a2:::aD

∼ distribution over multipartite pure state entanglement structures.

In the rest of the talk, take Nk = N � 1.

18/37



Colored tensor models [Gurau ’09]

· · ·
a1 a2 aD

Ta1a2···aD
= · · ·

a1a2aD
= T a1a2···aD

U(N)D invariants indexed by bubble diagrams B:

(D = 2) · · ·
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Colored tensor models [Gurau ’09]

· · ·
a1 a2 aD

Ta1a2···aD
= · · ·

a1a2aD
= T a1a2···aD

U(N)D invariants indexed by bubble diagrams B:

(D = 4) · · ·

Partition function:

F({–B}) = ln

∫
dT exp

(
−T · T +

∑
B

–B
N¸(B)

TrB(T ; T )

)
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Feynman graphs i1 j1
i2

i3 j3

j2 ∼
i1 j1

i2

i3 j3

j2 = δi1j1δi2j2δi3j3
0

1

2

3

G
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Jackets

�
�

�


Colored graph + cyclic permutation ff on the colors

⇒ combinatorial map Jff, called jacket.

σ′ = (0231)σ = (0123)

g(Jσ) = 0 g(Jσ′) = 1

σ′′ = (0213)

g(Jσ′′) = 0

Jff ∼ Jff−1 ⇒ ∃ D!
2 inequivalent choices of ff.

E.g. 3 inequivalent jackets for D = 3.
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Gurau degree

�

�

�

�

De�nition Gurau degree of a (D + 1)-colored graph G:

!(G) = D − F (G) +
D(D − 1)

2
p(G)

�

�

�

�
Theorem (Gurau '11; Gurau, Rivasseau '11)

∀G; !(G) ∈ N

Proof.

!(G) =
1

(D − 1)!

∑
ff

g(Jff)
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Large-N expansion [Gurau ’11; Bonzom, Gurau, Rivasseau ’12]

Scaling of bubbles and Feynman expansion governed by Gurau degree !:

F({–B}) = ln

∫
dT exp

(
−T · T +

∑
B
–B N

− 2
(D−2)!!(B) TrB(T ; T )

)
=
∑
!∈N

ND−
2

(D−1)!! F!({–B})

where

�� ��!(G) = D − F (G) + D(D−1)
2 p(G)

Generalization of the matrix genus expansion:

I ! ∈ N
I D = 2 ⇒ ! = g

Topological/geometric interpretation?
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Typical questions

I Combinatorial structure of leading-order graphs?

I Nature of F0({–B}) ? Critical behaviour?

I Optimal scalings:

Given a bubble B, what is the smallest ¸ such that the interaction

–B N
−¸ TrB(T ; T ) preserves the existence of a large N limit?

In contrast to random matrices, answering this question is hard.

(D = 2) · · ·

(D = 3) · · ·
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Outline
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Random geometry applications
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Colored triangulations

(D = 3)

1

2

(12)

2

(D = 4)

�



�
	Theorem: [Pezzana '74]

D-colored graph ⇔ triangulation ∆ of pseudo-manifold of dim. D − 1.

Colors → unambiguous identi�cation of sub-simplices and their gluings.

I Bubble ' D-colored graph ' boundary of D-cell.

I Feynman graph ' (D + 1)-colored graph ' ∆ of dimension D.
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D = 2
Gluing of 2p-angles:

0

1
2

0

0

0

2

2

1 1

Duality:

3−colored graph ←→ colored triangulation

node ←→ triangle

line ←→ edge

bicolored cycle ←→ vertex

Any orientable surface with boundaries can be represented by such a
3-colored graph.
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D = 3

Topological singularities can be generated in D ≥ 3:

g(K3;3) = 1 ⇒ boundary of a neighborhood not homeomorphic to a ball.

→ (D + 1)-colored graphs are dual to pseudo-manifolds of dimension D.
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D = 3

Jackets are dual to embedded quandrangulations in ∆.

(01)

(12)

(23)

(30)

σ = (0123)

More precisely, Jff encodes a Heegaard splitting of ∆.
[Ryan '11]
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Duality
Colored structure ⇒ unambiguous prescription for how to glue
D-simplices along their sub-simplices.

'

&

$

%

(D + 1)−colored graph ←→ colored D−triangulation

node ←→ D−simplex

connected component with k colors ←→ (D − k)−simplex

Essential in D ≥ 3.

1

2

(12)

2

(D = 4)

Crystallisation theory [Cagliardi, Ferri et al. '80s; Gurau, Ryan '11]
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Large-N expansion [Gurau ’11; Bonzom, Gurau, Rivasseau ’12]

Scaling of bubbles and Feynman expansion governed by Gurau degree !:

F({–B}) = ln

∫
dT exp

(
−T · T +

∑
B
–B N

− 2
(D−2)!!(B) TrB(T ; T )

)
=
∑
!∈N

ND−
2

(D−1)!! F!({–B})

where

�� ��!(∆) = D − nD−2(∆) + D(D−1)
4 nD(∆)

I ! ∈ N
I generalization of the genus: D = 2 ⇒ ! = g

I not a topological invariant of ∆ when D ≥ 3

I however: ! = 0 ⇒ ∆ is a D-sphere
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Botanical interlude: melon diagrams

Melonic theories → Feynman expansion dominated by melon diagrams:
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Leading order [Bonzom, Gurau, Riello, Rivasseau ’11;...]

!(∆) = 0 ⇔ ∆ is melonic

→ special triangulations of the D-sphere, with a
tree-like combinatorial structure.

Closed equation for their generating function:�� ��G(–) = 1 + –G(–)D+1 (Fuss-Catalan)

Critical behaviour:

G(–c)− G(–) ∼
–→–c

K (–c − –)1=2

⇔ #{ rooted melonic ∆ } ∼ K–−n∆
c n∆

−3=2

Universal critical exponent 3=2 associated to combinatorial trees.
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Continuum limit [Gurau, Ryan ’13]

Melons are branched polymers
i.e. they converge to the continuous random tree [Aldous '91].

Credit: I. Kortchemski (https://igor-kortchemski.perso.math.cnrs.fr/images.html)

#{ rooted melonic ∆ } ∼ K–−n∆
c n∆

−3=2

dspectral = 4=3 ; distance scale ∼ n∆
1=2 and dHausdorff = 2

⇒ strong universality: limit independent of D!
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Further results

I Combinatorial classi�cation of graphs at order ! > 0:
"it's melons all the way down". [Gurau, Schae�er '13]

I Double-scaling. [Bonzom, Gurau, Kaminski, Dartois, Oriti, Ryan, Tanasa '13

'14]

I Schwinger-Dyson eq. → analogue of loop equations. [Gurau '11]

I Non-perturbative treatment. [Gurau '14]

I ...

I Applications in Group Field Theory:
[Boulatov, Ooguri, '92... Freidel, Gurau, Oriti '00s '10s...]

Melonic behaviour ⇒ rigorous renormalization theorems
[Ben Geloun, Rivasseau '11; SC, Oriti, Rivasseau '13;...]

[Review SC '16]
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Beyond branched polymers?

No-go:

I Non-melonic large-N limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thüringen '17]

I Universality theorem: D = 3 ⇒ branched polymers for arbitrary
spherical bubbles. [Bonzom '18]

Yes go?

I D even ⇒ Brownian sphere, branched polymers and mixtures.
[Bonzom, Delpouve, Rivasseau '15]

I Simple combinatorial restrictions may change the universality class:

branched polymers −→
2PI

Ising on a random surface

[Benedetti, SC, Toriumi, Valette '20]

Major open question:
genuinely new random geometric phase suitable for QG in D ≥ 3?

[Lionni, Marckert '19]
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Summary

Tensor models for random geometry:

I well-de�ned generalization of the matrix models approach;

I reproduce previously known universality classes: continuous random
tree, Brownian sphere, and mixtures;

I tend to be dominated by tree-like combinatorial species ⇒ no
genuinely new universality class discovered so far...

...but a vast parameter space remains to be explored.

Entry points into the literature:

I "Random tensors", Gurau, 2016;

I "The Tensor Track" I-IV, Rivasseau, 2011-2016;

I "Colored Discrete Spaces", Lionni, 2018.
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